分析 (1)由$\frac{1}{a}$+$\frac{1}{b}$+$\frac{1}{c}$=(a+b+c)($\frac{1}{a}$+$\frac{1}{b}$+$\frac{1}{c}$),运用三元均值不等式,即可得证;
(2)由$\frac{1}{a+b}$+$\frac{1}{b+c}$+$\frac{1}{c+a}$=$\frac{1}{2}$[(a+b)+(b+c)+(c+a)]($\frac{1}{a+b}$+$\frac{1}{b+c}$+$\frac{1}{c+a}$),运用三元均值不等式,即可得证.
解答 证明:(1)设a,b,c均为正数,且a+b+c=1,
则$\frac{1}{a}$+$\frac{1}{b}$+$\frac{1}{c}$=(a+b+c)($\frac{1}{a}$+$\frac{1}{b}$+$\frac{1}{c}$)≥3$\root{3}{abc}$•3$\root{3}{\frac{1}{abc}}$
=9,当且仅当a=b=c=$\frac{1}{3}$时,取得等号;
(2)2=(a+b)+(b+c)+(a+c),
则$\frac{1}{a+b}$+$\frac{1}{b+c}$+$\frac{1}{c+a}$=$\frac{1}{2}$[(a+b)+(b+c)+(c+a)]($\frac{1}{a+b}$+$\frac{1}{b+c}$+$\frac{1}{c+a}$)
≥$\frac{1}{2}$•3$\root{3}{(a+b)(b+c)(c+a)}$•3$\root{3}{\frac{1}{(a+b)(b+c)(c+a)}}$=$\frac{9}{2}$.
当且仅当a=b=c=$\frac{1}{3}$时,取得等号.
点评 本题考查不等式的证明,注意运用三元均值不等式的运用,以及满足的条件:一正二定三等,考查推理能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 在区间($\frac{1}{e},1$),(1,e)内均有零点 | |
| B. | 在区间($\frac{1}{e},1$),(1,e)内均无零点 | |
| C. | 在区间($\frac{1}{e},1$)内有零点,在区间(1,e)内无零点 | |
| D. | 在区间($\frac{1}{e},1$)内无零点,在区间(1,e)内有零点 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com