精英家教网 > 高中数学 > 题目详情
9.在△ABC中,角A,B,C所对的边分别为a,b,c,已知cosC+(cosA-$\sqrt{3}$sinA)cosB=0
(1)求角B的大小;
(2)若a+c=2,b=1,求△ABC的面积.

分析 (1)由已知得$-cos(A+B)+cosAcosB-\sqrt{3}sinAcosB=0$,$tanB=\sqrt{3}$,即$B=\frac{π}{3}$.
(2)由余弦定理,b2=a2+c2-2accosB=(a+c)2-2ac(1+cosB).即ac=1.即可求出△ABC的面积

解答 解:(1)由已知得$-cos(A+B)+cosAcosB-\sqrt{3}sinAcosB=0$,即有$sinAsinB-\sqrt{3}sinAcosB=0$
因为sinA≠0,所以$sinB-\sqrt{3}cosB=0$,又cosB≠0,所以$tanB=\sqrt{3}$,
又0<B<π,所以$B=\frac{π}{3}$.
(2)由余弦定理,有b2=a2+c2-2accosB=(a+c)2-2ac(1+cosB).
因为$a+c=2,cosB=\frac{1}{2},b=1$,有ac=1.
 于是有${S_{△ABC}}=\frac{1}{2}acsinB=\frac{{\sqrt{3}}}{2}$.

点评 本题考查了三角恒等变形、余弦定理,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.求函数f(x)=$\frac{1}{3}a{x^3}-\frac{1}{2}(a+1){x^2}$+x(a∈R)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某市调研考试后,某校对甲乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀,统计成绩后,得到如下的列联表,且已知甲、乙两个班全部110人中随机抽取1人为优秀的概率为$\frac{3}{11}$
 优秀 非优秀 合计 
甲  10  
 乙 30  
 合计  110 
(1)请完成上面的列联表;
(2)根据列联表的数据,若按99.9%的可靠性要求,能否认为“成绩与班级有关系”;
(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名同学从2到10进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求9号或10号概率.
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d)
独立性检验临界值
P(K2≥k0) 0.10 0.050 0.025 0.010 0.001 
k0 2.706  3.841 5.024 6.63510.828 

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,在圆内随机撒一把豆子,统计落在其内接正方形中的豆子数目,若豆子总数为n,落在正方形内的豆子数为m,则圆周率π的估算值是(  )
A.$\frac{n}{m}$B.$\frac{2n}{m}$C.$\frac{3n}{m}$D.$\frac{2m}{n}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若a=$\frac{ln3}{3}$,b=$\frac{ln5}{5}$,c=$\frac{ln6}{6}$,则(  )
A.a<b<cB.c<b<aC.c<a<bD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.“雷神”火锅为提高销售业绩,委托我校同学研究气温对营业额的影响,并提供了一份该店在3月份中5天的日营业额y(千元)与当日最低气温x(℃)的数据,如表:
x258911
y1210887
(Ⅰ)请你求出y关于x的回归方程$\hat y=\hat bx+\hat a$;
(Ⅱ)若4月份某天的最低气温为13摄氏度,请预测该店当日的营业额.
【参考公式】$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若圆x2+y2-4x=0上恰有四个点到直线2x-y+m=0的距离等于1,则实数m的取值范围是方程是(  )
A.$({-2-\sqrt{5},-2+\sqrt{5}})$B.$({-4-\sqrt{5},-4+\sqrt{5}})$C.$({-4-3\sqrt{5},-4-\sqrt{5}})$D.$({-4+\sqrt{5},-4+3\sqrt{5}})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=xlnx-mx2有两个极值点,则实数m的取值范围是(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.复数z满足z(2+i)=3-6i(i为虚数单位),则复数z的虚部为(  )
A.3B.-3C.3iD.-3i

查看答案和解析>>

同步练习册答案