精英家教网 > 高中数学 > 题目详情
如图所示的几何体中,四边形ABCD是等腰梯形,AD∥CD,∠DAB=60°
FC⊥平面ABCD,AE⊥BD,CB=CD=CF.
(1)求证:平面ABCD⊥平面AED;
(2)直线AF与面BDF所成角的余弦值.
考点:平面与平面垂直的判定,直线与平面所成的角
专题:空间位置关系与距离,空间角
分析:(1)由已知条件推导出AD⊥BD,又AE⊥BD,从而BD⊥平面AED,由此能证明平面ABCD⊥平面AED.
(2)连结AC,由CA,CB,CF两两垂直,以C为坐标原点,建立空间直角坐标系,利用向量法能求出直线AF与面BDF所成角的余弦值.
解答: (1)证明:∵四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,
∴∠ADC=∠BCD=120°,
又CB=CD,∴∠CDB=30°,∴∠ADB=90°,AD⊥BD,
又AE⊥BD,且AE∩AD=A,AE,AD?平面AED,
∴BD⊥平面AED,∴平面ABCD⊥平面AED.
(2)解:连结AC,由(1)知AD⊥BD,∴AC⊥BC,
又FC⊥平面ABCD,∴CA,CB,CF两两垂直,
以C为坐标原点,建立空间直角坐标系,设CB=1,
则A(
3
,0,0
),B(0,1,0),D(
3
2
,-
1
2
,0

F(0,0,1),∴
BD
=(
3
2
,-
3
2
,0)

BF
=(0,-1,1)
AF=
(-
3
,0,1)

设平面BDF的一个法向量为
m
=(x,y,z)

m
BD
=
3
2
x-
3
2
y=0
m
BF
=-y+z=0
,取z=1,得
m
=(
3
,1,1)

cos<
AF
m
>=-
5
5

cosθ=
2
5
5

∴直线AF与面BDF所成角的余弦值为
2
5
5
.…(12分)
点评:本题考查平面与平面垂直的证明,考查直线与平面所成角的余弦值的求法,解题时要认真审题,注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知样本点(xi,yi)(i=1,2,…,n)的散点图呈线性正相关,且回归直线的斜率估计值的绝对值为1.23,样本点的中心为(4,5),则回归直线方程为(  )
A、
y
=1.23x+4
B、
y
=1.23x+5
C、
y
=1.23x+0.08
D、
y
=0.08x+1.23

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c.已知a=3,cos
A+C
2
=
3
3

(1)求cosB的值;
(2)分别求b的取值范围及
AB
AC
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

现将三双不同品牌的鞋排成一行,记同一双鞋相邻的数目为ξ.
(1)求ξ=0时的概率
(2)求ξ的分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0),D(1,0),过椭圆C的右焦点F(
2
,0)且垂直于x轴的直线与椭圆交于A,B两点,
OA
OB
=
5
3

(1)求椭圆C的方程;
(2)过点D的直线与椭圆C交于M,N两点,若
MD
=2
DN
,求直线MN的方程;
(3)设直线y=kx+2交椭圆C于P,Q两点,若以DP,DQ为邻边的平行四边形DPRQ满足|PQ|=|DR|,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=2,an+1=2an+2,n∈N*
(Ⅰ)证明数列{an+2}是等比数列,并求出数列{an}的通项公式;
(Ⅱ)求数列{nan}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是等差数列,且a1=2,a1+a2+a3=9.
(1)求数列{an}的通项公式;
(2)令bn=an2an求数列{bn}前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
a
=(1,sinθ),
b
=(2,cosθ),θ为锐角.
(1)若
a
b
=
7
3
,求sinθ+cosθ的值;
(2)若
a
b
,求sinθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=1,|
b
|=2,
a
b
的夹角为60°,求:
(1)
a
b
方向上的投影;
(2)
c
a
+
b
d
=
a
+2
b
的夹角为锐角,求λ的取值范围.

查看答案和解析>>

同步练习册答案