精英家教网 > 高中数学 > 题目详情
已知定义域为R的函数f(x)既是奇函数,又是周期为3的周期函数,当x∈(0,)时,f(x)=sinπx,f()=,则函数f(x)在区间[0,6]上的零点个数是( )
A.3
B.5
C.7
D.9
【答案】分析:要求方程f(x)=0在区间[0,6]上的解的个数,根据函数f(x)是定义域为R的周期为3的奇函数,且当x∈(0,)时f(x)=sinπx,我们不难得到一个周期函数零点的个数,根据周期性进行分析不难得到结论.
解答:解:∵当x∈(0,)时,f(x)=sinπx,
令f(x)=0,则sinπx=0,解得x=1.
又∵函数f(x)是定义域为R的奇函数,
∴在区间∈[-]上,
f(-1)=f(1)=0,
f(0)=0,
∵函数f(x)是周期为3的周期函数
则方程f(x)=0在区间[0,6]上的解有0,1,2,3,4,5,6.
共7个.
故选C.
点评:若奇函数经过原点,则必有f(0)=0,这个关系式大大简化了解题过程,要注意在解题中使用.如果本题所给区间为开区间,则答案为5个,若区间为半开半闭区间,则答案为6个,故要注意对端点的分析.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•石家庄二模)已知定义域为R的函数f(x)在(1,+∞)上为减函数,且函数y=f(x+1)为偶函数,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)满足f(x)f(x+2)=5,若f(2)=3,则f(2012)=
5
3
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)在(4,+∞)上为减函数,且函数y=f(x)的对称轴为x=4,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
-2x+a2x+1
是奇函数
(1)求a值;
(2)判断并证明该函数在定义域R上的单调性;
(3)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求实数k的取值范围;
(4)设关于x的函数F(x)=f(4x-b)+f(-2x+1)有零点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)满足f(4-x)=-f(x),当x<2时,f(x)单调递减,如果x1+x2>4且(x1-2)(x2-2)<0,则f(x1)+f(x2)的值(  )

查看答案和解析>>

同步练习册答案