精英家教网 > 高中数学 > 题目详情
19.过 A(-1,0),B(3,0)两点的所有圆中面积最小的圆的方程是(x-1)2+y2=4 .

分析 根据题意可知,以线段AB为直径的圆在过A和B两点的所有圆中面积最小,由A和B的坐标,利用中点坐标公式求出线段AB的中点即为所求圆的圆心,然后利用两点间的距离公式求出线段AB的长,进而得到所求圆的半径,根据求出的圆心坐标和圆的半径写出所求圆的标准方程即可.

解答 解:由题意可知面积最小的圆的圆心坐标为(1,0),即(0,0),
半径r=2,
则所求圆的方程为:(x-1)2+y2=4.
故答案为:(x-1)2+y2=4.

点评 此题考查学生灵活运用中点坐标公式及两点间的距离公式化简求值,会根据圆心坐标和半径写出圆的标准方程,是一道基础题.找出以AB为直径的圆即为面积最小的圆是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.一项“过关游戏”规则规定:在第n关要抛掷一颗骰子n次,如果这n次抛掷所出现的点数的和大于2n,则算过关,则某人连过前两关的概率是(  )
A.$\frac{2}{9}$B.$\frac{2}{3}$C.$\frac{5}{6}$D.$\frac{5}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若f(2x+1)=2x2+1,则f(x)=$\frac{1}{2}$x2-x+$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)是(-∞,+∞)上的奇函数,且f(x)的图象关于直线x=1对称,当x∈[-1,0]时,f(x)=-x,则f(2017)+f(2018)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一条渐近线为$y=-\sqrt{2}x$,且一个焦点是抛物线y2=12x的焦点,则该双曲线的方程为(  )
A.$\frac{y^2}{3}-\frac{x^2}{6}=1$B.$\frac{x^2}{3}-\frac{y^2}{6}=1$C.$\frac{x^2}{6}-\frac{y^2}{3}=1$D.$\frac{y^2}{6}-\frac{x^2}{3}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知圆锥的表面积为π,且它的侧面展开图是一个半圆,求这个圆锥的底面直径.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.方程x2+y2-2x-4y+6=0表示的轨迹为(  )
A.圆心为(1,2)的圆B.圆心为(2,1)的圆C.圆心为(-1,-2)的圆D.不表示任何图形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在平面直角坐标系xOy中,直线x=a(a>0)与曲线y=x2及x轴所围成的封闭图形的面积为$\frac{8}{3}$,则a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,M为AB的中点,$\overrightarrow{AN}=2\overrightarrow{NC}$,若$\overrightarrow{MN}=x\overrightarrow{AB}+y\overrightarrow{AC}$,则x+y=$\frac{1}{6}$

查看答案和解析>>

同步练习册答案