精英家教网 > 高中数学 > 题目详情
9.在△ABC中,M为AB的中点,$\overrightarrow{AN}=2\overrightarrow{NC}$,若$\overrightarrow{MN}=x\overrightarrow{AB}+y\overrightarrow{AC}$,则x+y=$\frac{1}{6}$

分析 用$\overrightarrow{AB}、\overrightarrow{AC}$表示$\overrightarrow{MN}$即可求出x、y.

解答 解:∵M为AB的中点,$\overrightarrow{AN}=2\overrightarrow{NC}$,∴$\overrightarrow{MN}=\overrightarrow{AN}-\overrightarrow{AM}=\frac{2}{3}\overrightarrow{AC}-\frac{1}{2}\overrightarrow{AB}$,⇒x=-$\frac{1}{2}$,y=$\frac{2}{3}$,∴x+y=$\frac{1}{6}$;
故答案为:$\frac{1}{6}$

点评 本题考查了平面向量的线性运算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.过 A(-1,0),B(3,0)两点的所有圆中面积最小的圆的方程是(x-1)2+y2=4 .

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知直线ax-ky+k=0(a为常数,k≠0为参数),不论k取何值,直线总过定点(  )
A.(a,0)B.(1,0)C.(1,1)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设点A(3,-5),B(-2,-2),直线l过点P(1,1)且与线段AB相交,则直线l的斜率k的取值范围是(  )
A.k≥1或k≤-3B.-3≤k≤1C.-1≤k≤3D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若函数f(x)=ax3-bx+2,a,b∈R若f(-2)=-1,则f(2)=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图所示,ABCD是长为8,宽为4的矩形,设点H在直线AD上运动,BH的垂直平分线为m,过点H且与BD平行(或重合)的直线与直线m相交于点M,则点M的轨迹为(  )
A.圆的一部分B.椭圆的一部分C.双曲线的一部分D.抛物线的一部分

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立坐标系,曲线C1的参数方程为$\left\{\begin{array}{l}{x=2+\sqrt{3}cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$(θ为参数),曲线C2的极坐标方程为θ=$\frac{π}{6}$(ρ∈R),
(1)求曲线C1的普通方程,曲线C2的直角坐标方程;
(2)曲线C1与C2相交于A,B两点,点P(3,$\sqrt{3}$),求||PA|-|PB||的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.将函数$y=sin(2x-\frac{π}{6})$的图象上所有点的横坐标向左平移$\frac{π}{12}$个单位,可得函数y=sin2x的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在锐角△ABC中,已知$\overrightarrow{AB}$•$\overrightarrow{AC}$+$\overrightarrow{BA}$•$\overrightarrow{BC}$=2$\overrightarrow{CA}$•$\overrightarrow{CB}$.
(1)求$\frac{tanC}{tanA}$+$\frac{tanC}{tanB}$的值;
(2)求cosC的取值范围.

查看答案和解析>>

同步练习册答案