精英家教网 > 高中数学 > 题目详情
若a,b,c均为实数,且a=x2-2x+
π
2
,b=y2-2y+
π
2
,c=z2-2z+
π
2
,试用反证法证明:a,b,c中至少有一个大于0.
考点:反证法与放缩法
专题:证明题,反证法
分析:用反证法,假设a,b,c都小于或等于0,推出a+b+c的值大于0,出现矛盾,从而得到假设不正确,命题得证.
解答: 证明:假设a,b,c都不大于0即a≤0,b≤0,c≤0
根据同向不等式的可加性可得a+b+c≤0①
又a+b+c=x2-2x+
π
2
+y2-2y+
π
2
+z2-2z+
π
2
=(x-1)2+(y-1)2+(z-1)2+
3
2
π
-3>0与①式矛盾
所以假设不成立,即原命题的结论a,b,c中至少有一个大于0.
点评:本题的考点是反证法与放缩法,主要考查用反证法证明数学命题,推出矛盾,是解题的关键和难点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为
3
2
,且过点A(0,1).
(1)求椭圆的方程;
(2)过点A作两条互相垂直的直线分别交椭圆于M,N两点.求证:直线恒过定点P.并求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
x-x3
x4+2x2+1
的最大值与最小值之积等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若0<x<
π
2
,0<y<
π
2
,且sinx=xcosy,则(  )
A、y<
x
4
B、
x
4
<y<
x
2
C、
x
2
<y<x
D、x<y

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=2,an+1=-
1
an+1
,若k是5的倍数,且ak=2,则k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1,F2,若椭圆上存在点P使线段PF1与以椭圆短轴为直径的圆相切,切点恰为线段PF1的中点,则该椭圆的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

表面积为4
3
的正四面体的各个顶点都在同一个球面上,则此球的体积为(  )
A、
6
3
π
B、
2
6
3
π
C、
6
π
D、
6
27
π

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线C的渐进线方程为4x±3y=0,一条准线方程为y=
16
5
,则双曲线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=Asin(ωx+∅)(A>0,ω>0,|∅|<
π
2
)的部分图象如图所示,若将f(x)图象上所有点的横坐标缩短来原来的
1
2
倍(纵坐标不变),得到函数g(x)的图象,则g(x)的解析式为(  )
A、y=sin(4x+
π
6
B、y=sin(4x+
π
3
C、y=sin(x+
π
6
D、y=sin(x+
π
12

查看答案和解析>>

同步练习册答案