精英家教网 > 高中数学 > 题目详情
已知α,β∈R,设p:α>β,设q:α-sinβcosα>β-sinαcosβ,则p是q的(  )
A、充分必要条件
B、充分不必要条件
C、必要不充分条件
D、既不充分也不必要条件
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:根据充分条件和必要条件的定义,构造函数f(x)=x+sinx即可得到结论.
解答: 解:若α-sinβcosα>β-sinαcosβ,
则α-β>sinβcosα-sinαcosβ=sin(β-α),
即α-β+sin(α-β)>0,
设x=α-β,则f(x)=x+sinx,
f′(x)=1-cosx≥0单调递增,
若α>β,即x>0时,f(x)>f(0)=0,
即α-β+sin(α-β)>0,成立,
故p是q的充分必要条件,
故选:A.
点评:本题主要考查充分条件和必要条件的判断,利用三角关系构造函数f(x)=x+sinx是解决本题的关键,综合性较强.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知sinθ-cosθ=
1
5
,则sin2θ的值是(  )
A、
4
5
B、-
4
5
C、-
24
25
D、
24
25

查看答案和解析>>

科目:高中数学 来源: 题型:

某汽车生产厂家准备推出10款不同的轿车参加车展,但主办方只能为该厂提供6个展位,每个展位摆放一辆车,并且甲、乙两款车不能摆放在1号展位,那么该厂家参展轿车的不同摆放方案有(  )
A、C
 
2
10
A
 
4
8
 种
B、C
 
1
9
A
 
5
9
C、C
 
1
8
A
 
5
9
 种
D、C
 
1
8
A
 
5
8
 种

查看答案和解析>>

科目:高中数学 来源: 题型:

若当P(m,n)为圆x2+(y-1)2=1上任意一点时,等式m+n+c=0恒成立,则c的取值范围是(  )
A、-1-
2
≤c≤
2
-1
B、
2
-1≤c≤
2
+1
C、c≤-
2
-1
D、c≥
2
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

常说“便宜没好货”,这句话的意思是:“不便宜”是“好货”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

商场销售的某种饮品每件售价36元,成本为20元.对该饮品进行促销;顾客每购买一件,当即连续转动三次如图所示转盘,每次停止后指针指向一个数字,若三次指向同一个数字,获一等奖;若三次指向的数字是连号(不考虑顺序),获二等奖;其它情况无奖.
(1)求一顾客一次购买两件该饮品,至少有一件获得奖励的概率;
(2)若奖励为返还现金,一等奖奖金数是二等奖的2倍,统计标明:每天的销量y(件)与一等奖的奖金额x(元)的关系式为y≈
x
4
+24.问x设定为多少最佳?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

某汽车厂有一条价值为a万元的汽车生产线,现要通过技术改造来提高该生产线的生产能力,提高产品的增加值.经过市场调查,产品的增加值y万元与技术改造投入的x万元之间满足:①y与(a-x)和x2的乘积成正比;②x∈(0,
2am
2m+1
],其中m是常数.若x=
a
2
时,y=a3
(1)求产品增加值y关于x的表达式;
(2)求产品增加值y的最大值及相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

三角形ABC中,角A、B、C所对边分别为a,b,c,且
2
sinB=
3cosB

(1)若cosA=
1
3
,求sinC的值;
(2)若b=
7
,sinA=3sinC,求三角形ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(
1
2
1
2
sinx+
3
2
cosx)和向量
b
=(1,f(x)),且
a
b

(1)求函数f(x)的最小正周期和最大值;
(2)已知△ABC的三个内角分别为A,B,C,若有f(A-
π
3
)=
3
,BC=
7
,sinB=
21
7
,求AC的长度.

查看答案和解析>>

同步练习册答案