É̳¡ÏúÊÛµÄijÖÖÒûƷÿ¼þÊÛ¼Û36Ôª£¬³É±¾Îª20Ôª£®¶Ô¸ÃÒûÆ·½øÐдÙÏú£»¹Ë¿Íÿ¹ºÂòÒ»¼þ£¬µ±¼´Á¬Ðø×ª¶¯Èý´ÎÈçͼËùʾתÅÌ£¬Ã¿´ÎÍ£Ö¹ºóÖ¸ÕëÖ¸ÏòÒ»¸öÊý×Ö£¬ÈôÈý´ÎÖ¸Ïòͬһ¸öÊý×Ö£¬»ñÒ»µÈ½±£»ÈôÈý´ÎÖ¸ÏòµÄÊý×ÖÊÇÁ¬ºÅ£¨²»¿¼ÂÇ˳Ðò£©£¬»ñ¶þµÈ½±£»ÆäËüÇé¿öÎÞ½±£®
£¨1£©ÇóÒ»¹Ë¿ÍÒ»´Î¹ºÂòÁ½¼þ¸ÃÒûÆ·£¬ÖÁÉÙÓÐÒ»¼þ»ñµÃ½±ÀøµÄ¸ÅÂÊ£»
£¨2£©Èô½±ÀøÎª·µ»¹ÏÖ½ð£¬Ò»µÈ½±½±½ðÊýÊǶþµÈ½±µÄ2±¶£¬Í³¼Æ±êÃ÷£ºÃ¿ÌìµÄÏúÁ¿y£¨¼þ£©ÓëÒ»µÈ½±µÄ½±½ð¶îx£¨Ôª£©µÄ¹ØÏµÊ½Îªy¡Ö
x
4
+24£®ÎÊxÉ趨Ϊ¶àÉÙ×î¼Ñ£¿²¢ËµÃ÷ÀíÓÉ£®
¿¼µã£ºÏ໥¶ÀÁ¢Ê¼þµÄ¸ÅÂʳ˷¨¹«Ê½,»¥³âʼþµÄ¸ÅÂʼӷ¨¹«Ê½
רÌ⣺¼ÆËãÌâ
·ÖÎö£º£¨¢ñ£©¼Çʼþ£º¡°Ò»¹Ë¿Í¹ºÂòÒ»¼þÒûÆ·»ñµÃiµÈ½±¡±ÎªAi£¬i=1£¬2£¬ÓɵȿÉÄÜʼþµÄ¸ÅÂʼÆËã¿ÉµÃP£¨A1£©ÓëP£¨A2£©£¬½ø¶øÓÉÒ»¹Ë¿ÍÒ»´Î¹ºÂòÒ»¼þÒûÆ·»ñµÃ½±ÀøµÄ¸ÅÂÊ£¬ÓÉÏ໥¶ÀÁ¢Ê¼þµÄ¸ÅÂʹ«Ê½¼ÆËã¿ÉµÃ´ð°¸£»
£¨¢ò£©ÉèÒ»¹Ë¿Íÿ¹ºÂòÒ»¼þÒûÆ·ËùµÃ½±½ð¶îΪXÔª£¬·ÖÎö¿ÉµÃXµÄ¿ÉÄÜȡֵΪx£¬
x
2
£¬0£»¼ÆËã¿ÉµÃP£¨X=x£©ÒÔ¼°P£¨X=
x
2
£©£¬½áºÏÌâÒâ¼ÆËã¼´¿ÉµÃ´ð°¸£®
½â´ð£º ½â£º£¨¢ñ£©¼Çʼþ£º¡°Ò»¹Ë¿Í¹ºÂòÒ»¼þÒûÆ·»ñµÃiµÈ½±¡±ÎªAi£¬i=1£¬2£¬
ÔòP£¨A1£©=
6
63
=
1
36
£¬P£¨A2£©=
4
A
3
2
63
=
4
36
£¬
ÔòÒ»¹Ë¿ÍÒ»´Î¹ºÂòÒ»¼þÒûÆ·»ñµÃ½±ÀøµÄ¸ÅÂÊΪP£¨A1+A2£©=P£¨A1£©+P£¨A2£©=
5
36
£®¡­£¨4·Ö£©
¹ÊÒ»¹Ë¿ÍÒ»´Î¹ºÂòÁ½¼þÒûÆ·£¬ÖÁÉÙÓÐÒ»¼þ»ñµÃ½±ÀøµÄ¸ÅÂÊp=1-£¨1-
5
36
£©2=
335
1296
£®¡­£¨6·Ö£©
£¨¢ò£©ÉèÒ»¹Ë¿Íÿ¹ºÂòÒ»¼þÒûÆ·ËùµÃ½±½ð¶îΪXÔª£¬ÔòXµÄ¿ÉÄÜȡֵΪx£¬
x
2
£¬0£®
ÓÉ£¨¢ñ£©µÃP£¨X=x£©=
1
36
£¬P£¨X=
x
2
£©=
4
36
£¬E£¨x£©=
x
36
+
2x
36
=
x
12
£®¡­£¨9·Ö£©
¸ÃÉ̳¡Ã¿ÌìÏúÊÛÕâÖÖÒûÆ·ËùµÃƽ¾ùÀûÈó
Y=y[£¨36-20£©-E£¨x£©]=£¨
x
4
+24£©£¨16-
x
12
£©=-
1
48
£¨x-48£©2+432£®
µ±x=48ʱ£¬Y×î´ó£®¹ÊxÉ趨Ϊ48£¨Ôª£©Îª×î¼Ñ£®¡­£¨12·Ö£©
µãÆÀ£º±¾Ì⿼²éÅÅÁÐ×éºÏµÄÓ¦Óã¬Éæ¼°µÈ¿ÉÄÜʼþ¡¢»¥³âʼþµÄ¸ÅÂʼÆË㣬עÒâÕýÈ··ÖÎöʼþÖ®¼äµÄÏ໥¹ØÏµ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª·ÇÁãÏòÁ¿
a
£¬
b
Âú×㣨
a
-2
b
£©¡Í
a
£¬£¨
b
-2
a
£©¡Í
b
£¬ÔòÏòÁ¿
a
ÓëÏòÁ¿
b
µÄ¼Ð½ÇΪ£¨¡¡¡¡£©
A¡¢
¦Ð
6
B¡¢
¦Ð
4
C¡¢
¦Ð
3
D¡¢
2¦Ð
3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÏòÁ¿
a
=£¨cos¦È£¬sin¦È£©£¬¦È¡Ê£¨
¦Ð
2
£¬¦Ð£©£¬
b
=£¨0£¬-1£©£¬Ôò
a
Óë
b
µÄ¼Ð½ÇµÈÓÚ£¨¡¡¡¡£©
A¡¢¦È-
¦Ð
2
B¡¢
¦Ð
2
+¦È
C¡¢
3¦Ð
2
-¦È
D¡¢¦È

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚ10¸öÐÎ×´´óС¾ùÏàͬµÄÇòÖÐÓÐ6¸öºìÇòºÍ4¸ö°×Çò£¬²»·Å»ØµØÒÀ´ÎÃþ³ö2¸öÇò£¬ÔÚµÚ1´ÎÃþ³öºìÇòµÄÌõ¼þÏ£¬µÚ2´ÎÒ²Ãþµ½ºìÇòµÄ¸ÅÂÊΪ£¨¡¡¡¡£©
A¡¢
3
5
B¡¢
2
5
C¡¢
5
9
D¡¢
1
10

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¦Á£¬¦Â¡ÊR£¬Éèp£º¦Á£¾¦Â£¬Éèq£º¦Á-sin¦Âcos¦Á£¾¦Â-sin¦Ácos¦Â£¬ÔòpÊÇqµÄ£¨¡¡¡¡£©
A¡¢³ä·Ö±ØÒªÌõ¼þ
B¡¢³ä·Ö²»±ØÒªÌõ¼þ
C¡¢±ØÒª²»³ä·ÖÌõ¼þ
D¡¢¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÔÚÈñ½ÇÈý½ÇÐÎABCÖУ¬DΪCÔÚABÉϵÄÉäÓ°£¬EΪDÔÚBCÉϵÄÉäÓ°£¬FΪDEÉÏÒ»µã£¬ÇÒÂú×ã
EF
FD
=
AD
DB
£®
£¨¢ñ£©Ö¤Ã÷£ºCF¡ÍAE£»
£¨¢ò£©ÈôAD=2£¬CD=3£®DB=4£¬Çótan¡ÏBAEµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¹ØÓÚxµÄ·½³Ìx2-mx+m+1=0£¨k¡ÊR£©µÄÁ½Êµ¸ùΪsin¦ÈºÍcos¦È£¬¦È¡Ê£¨0£¬2¦Ð£©£¬sin¦È+cos¦ÈÇó£º
£¨1£©mµÄÖµ£»
£¨2£©
sin¦È
1+
1
tan¦È
+
cos¦È
1+tan¦È
掙术
£¨3£©·½³ÌµÄÁ½Êµ¸ù¼°´Ëʱ¦ÈµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªx£¬yΪÕýʵÊý£¬Çó
x
2x+y
+
2y
x+2y
µÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¼¯ºÏA={a|
 (x- a)( x- a2+ a)
 x - a
=0ÓÐΨһʵÊý½â}£¬ÊÔÓÃÁоٷ¨±íʾ¼¯ºÏA£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸