精英家教网 > 高中数学 > 题目详情
已知集合A={a|
 (x- a)( x- a2+ a)
 x - a
=0有唯一实数解},试用列举法表示集合A.
考点:集合的表示法
专题:集合
分析:由于方程
(x-a)(x-a2+a)
x-a
=0
有唯一实数解,可得x≠a,x=a2-a,即可得出.
解答: 解:∵方程
(x-a)(x-a2+a)
x-a
=0
有唯一实数解,
∴x≠a,x=a2-a,
∴a2-a≠a,即a2-2a≠0.
∴a≠2且a≠0.
∴A={a|a≠2且a≠0}
点评:本题考查了分式类型的方程解法、集合的有关性质,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

商场销售的某种饮品每件售价36元,成本为20元.对该饮品进行促销;顾客每购买一件,当即连续转动三次如图所示转盘,每次停止后指针指向一个数字,若三次指向同一个数字,获一等奖;若三次指向的数字是连号(不考虑顺序),获二等奖;其它情况无奖.
(1)求一顾客一次购买两件该饮品,至少有一件获得奖励的概率;
(2)若奖励为返还现金,一等奖奖金数是二等奖的2倍,统计标明:每天的销量y(件)与一等奖的奖金额x(元)的关系式为y≈
x
4
+24.问x设定为多少最佳?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x(
1
2x-1
+
1
2

(1)判定并证明函数的奇偶性;
(2)试证明f(x)>0在定义域内恒成立;
(3)当x∈[1,3]时,2f(x)-(
1
2
m•x<0恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=(x-a)2+(lnx-a)2
(Ⅰ)求函数f(x)在A(1,0)处的切线方程;
(Ⅱ)若g′(x)在[1,+∞)上单调递增,求实数a的取值范围;
(Ⅲ)证明:g(x)≥
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(
1
2
1
2
sinx+
3
2
cosx)和向量
b
=(1,f(x)),且
a
b

(1)求函数f(x)的最小正周期和最大值;
(2)已知△ABC的三个内角分别为A,B,C,若有f(A-
π
3
)=
3
,BC=
7
,sinB=
21
7
,求AC的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对的边分别为a,b,c,且sin2A+sin2B+cos2C=1+sinAsinB
(1)求角C的大小;
(2)若c=2,且△ABC的面积为
3
,求a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:

现有0,1,2,3,4,5六个数字.
(1)用所给数字能够组成多少个四位数?
(2)用所给数字可以组成多少个没有重复数字的五位数?
(3)用所给数字可以组成多少个没有重复数字且比3142大的数?(最后结果均用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x+1|+|x-3|.
(1)求不等式f(x)<6的解集;
(2)若关于x的方程f(x)=|a-2|有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

过定点P(1,2)的直线在x轴、y轴的正半轴上的截距分别为a,b,则a+b的最小值是
 

查看答案和解析>>

同步练习册答案