精英家教网 > 高中数学 > 题目详情
已知函数f(x)=lnx,g(x)=(x-a)2+(lnx-a)2
(Ⅰ)求函数f(x)在A(1,0)处的切线方程;
(Ⅱ)若g′(x)在[1,+∞)上单调递增,求实数a的取值范围;
(Ⅲ)证明:g(x)≥
1
2
考点:利用导数研究曲线上某点切线方程,利用导数研究函数的单调性,利用导数研究函数的极值
专题:综合题,导数的综合应用
分析:(Ⅰ)求导数,确定切线的斜率,尽快求函数f(x)在A(1,0)处的切线方程;
(Ⅱ)求函数的导数,利用函数单调性和导数之间的关系进行求解即可;
(Ⅲ)令h(a)=2a2-2(x+lnx)a+x2+ln2x,则h(a)≥
(x-lnx)2
2
,令Q(x)=x-lnx,求出Q(x)min=Q(1)=1,即可证明结论.
解答: (Ⅰ)解:∵f(x)=lnx,
∴f′(x)=
1
x
,…(1分)
∴f′(1)=1,…(2分)
故切线方程为y=x-1;…(4分)
(Ⅱ)解:∵g(x)=(x-a)2+(lnx-a)2
∴g′(x)=2(x-
a
x
+
lnx
x
-a),…(5分)
令F(x)=x-
a
x
+
lnx
x
-a,则y=F(x)在[1,+∞)上单调递增.
F′(x)=
x2-lnx+a+1
x2
,则当x≥1时,x2-lnx+a+1≥0恒成立,
即当x≥1时,a≥-x2+lnx-1恒成立.…(6分)
令G(x)=-x2+lnx-1,则当x≥1时,G′(x)=
1-2x2
x
<0,
故G(x)=-x2+lnx-1在[1,+∞)上单调递减,从而G(x)max=G(1)=-2,(7分)
故a≥-2.…(8分)
(Ⅲ)证明:g(x)=(x-a)2+(lnx-a)2=2a2-2(x+lnx)a+x2+ln2x,
令h(a)=2a2-2(x+lnx)a+x2+ln2x,则h(a)≥
(x-lnx)2
2
.…(9分)
令Q(x)=x-lnx,则Q′(x)=
x-1
x
,显然Q(x)=在(0,1)上单调递减,在(1,+∞)上单调递增,…(10分)
则Q(x)min=Q(1)=1,…(11分)
则g(x)=h(a)≥
1
2
.…(12分)
点评:本题主要考查导数知识的综合运用,考查导数的几何意义、函数单调性与最值,利用函数单调性和导数之间的关系是解决本题的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在10个形状大小均相同的球中有6个红球和4个白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次也摸到红球的概率为(  )
A、
3
5
B、
2
5
C、
5
9
D、
1
10

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y为正实数,求
x
2x+y
+
2y
x+2y
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-a(x+2)-b(e为自然对数的底,a,b∈R).
(1)讨论函数f(x)的单调性;
(2)若函数f(x)的最小值为0,求b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=9x-2×3x+4,x∈[0,2]
(1)设t=3x,x∈[0,2],求t的最大值与最小值;
(2)求f(x)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}和{bn}的前n项和分别为Sn和Tn,已知
a5
b5
=
2
3
,求
S9
T9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={a|
 (x- a)( x- a2+ a)
 x - a
=0有唯一实数解},试用列举法表示集合A.

查看答案和解析>>

科目:高中数学 来源: 题型:

销售甲、乙两种商品所得利润分别为P(单位:万元)和Q(单位:万元),它们与投入资金m(单位:万元)的关系有经验公式P=
1
5
m,P=
1
5
m,Q=
3
5
m
.今将3万元资金投入经营甲、乙两种商品,其中对甲种商品投资x(单位:万元)
(1)试建立总利润y(单位:万元)关于x的函数关系式,并指明函数定义域;
(2)如何投资经营甲、乙两种商品,才能使得总利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-k+2
x2+1
,若存在实数m∈[-1,1],使得f(m)=1,则实数k的取值范围是
 

查看答案和解析>>

同步练习册答案