【题目】已知函数
.
(1)讨论在上的单调性;
(2)是否存在实数
,使得
在
上的最大值为
,若存在,求满足条件的
的个数;若不存在,请说明理由.
【答案】(1)当
时,
在
上递增;当
或
时,
在
上递减;当
且
时,
在
上递增;在
上递减. (2)
的个数为1.
【解析】试题分析:(1)先求导数,根据定义域研究导函数符号变化规律:当
时,恒为正;当
时,恒为负;当
且
时,有零点,先增后减(2)由单调性知当
且
时,有最值,且为
,再化简方程得
,最后利用导数研究函数
单调性,并确定解得情况
试题解析:(1)![]()
当
时,
在
上递增.
当
时即
或
时,
,
在
上递减.
当
且
时,令
得
.
令
得
;令
得
.
在
上递增,在
上递减.
综上,当
时,
在
上递增;当
或
时,
在
上递减;
当
且
时,
在
上递增;在
上递减.
(2)易知
,
在
上递减,在
上递减,
.
,即
,
设
,易知
为增函数,且
,
,
的唯一零点在
上,
存在
,且
的个数为1.
科目:高中数学 来源: 题型:
【题目】连续抛掷同一颗均匀的骰子,令第i次得到的点数为ai , 若存在正整数k,使a1+a2+…+ak=6,则称k为你的幸运数字.
(1)求你的幸运数字为3的概率;
(2)若k=1,则你的得分为5分;若k=2,则你的得分为3分;若k=3,则你的得分为1分;若抛掷三次还没找到你的幸运数字则记0分,求得分X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a为实数,f(x)=(x2﹣4)(x﹣a).
(1)求导数f′(x);
(2)若f′(﹣1)=0,求f(x)在[﹣2,2]上的最大值和最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用7局4胜制(即先胜4局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同.
(1)求甲以4比1获胜的概率;
(2)求乙获胜且比赛局数多于5局的概率;
(3)求比赛局数的分布列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合M={1,2,3},N={1,2,3,4},定义函数f:M→N.若点A(1,f(1))、B(2,f(2))、C(3,f(3)),△ABC的外接圆圆心为D,且
,则满足条件的函数f(x)有( )
A.6个
B.10个
C.12个
D.16个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着人们对环境关注度的提高,绿色低碳出行越来越受到市民重视. 为此贵阳市建立了公共自行车服务系统,市民凭本人二代身份证到自行车服务中心办理诚信借车卡借车,初次办卡时卡内预先赠送20积分,当积分为0时,借车卡将自动锁定,限制借车,用户应持卡到公共自行车服务中心以1元购1个积分的形式再次激活该卡,为了鼓励市民租用公共自行车出行,同时督促市民尽快还车,方便更多的市民使用,公共自行车按每车每次的租用时间进行扣分收费,具体扣分标准如下:
①租用时间不超过1小时,免费;
②租用时间为1小时以上且不超过2小时,扣1分;
③租用时间为2小时以上且不超过3小时,扣2分;
④租用时间超过3小时,按每小时扣2分收费(不足1小时的部分按1小时计算).
甲、乙两人独立出行,各租用公共自行车一次,两人租车时间都不会超过3小时,设甲、乙租用时间不超过1小时的概率分别是0.4和0.5;租用时间为1小时以上且不超过2小时的概率分别是0.4和0.3.
(1)求甲、乙两人所扣积分相同的概率;
(2)设甲、乙两人所扣积分之和为随机变量
,求
的分布列和数学期望
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com