如图,在直三棱柱A1B1C1-ABC中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点.
(1) 求异面直线A1B与C1D所成角的余弦值;
(2) 求平面ADC1与平面ABA1所成二面角的平面角的正弦值.
![]()
科目:高中数学 来源: 题型:
某校心理学研究小组在对学生上课注意力集中情况的调查研究中,发现其注意力指数p与听课时间t之间的关系满足如图所示的曲线.当t∈(0,14]时,曲线是二次函数图象的一部分;当t∈[14,40]时,曲线是函数y=loga(x-5)+83(a>0且a≠1)图象的一部分.根据专家研究,当注意力指数p≥80时,听课效果最佳.
(1) 试求p=f(t)的函数关系式;
(2) 教师在什么时段内安排核心内容,能使得学生听课效果最佳?请说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
如图,已知椭圆C1的中心在原点O,长轴的左、右端点M,N在x轴上,椭圆C2的短轴为MN,且椭圆C1,C2的离心率都为e,直线l⊥MN,l与椭圆C1交于B,C两点,与椭圆C2交于A,D两点,这四点按纵坐标从大到小依次为A,B,C,D.
(1) 设e=
,求BC与AD的比值;
(2) 当e变化时,是否存在直线l,使得|BO∥AN|请说明理由.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com