精英家教网 > 高中数学 > 题目详情
15.已知正实数a,b满足$\frac{1}{a}$+$\frac{2}{b}$=3,则(a+1)(b+2)的最小值是(  )
A.$\frac{25}{3}$B.$\frac{50}{9}$C.7D.6

分析 先根据基本不等式的性质得到ab≥$\frac{8}{9}$,再由题意得到2a+b=3ab,即可求出(a+1)(b+2)的最小值.

解答 解:∵正实数a,b满足$\frac{1}{a}$+$\frac{2}{b}$=3,
∴3=$\frac{1}{a}$+$\frac{2}{b}$≥2$\sqrt{\frac{2}{ab}}$,当且仅当a=$\frac{2}{3}$,b=$\frac{4}{3}$取等号,
∴$\sqrt{ab}$≥$\frac{2\sqrt{2}}{3}$,
∴ab≥$\frac{8}{9}$,
∵$\frac{1}{a}$+$\frac{2}{b}$=3,
∴2a+b=3ab,
∴(a+1)(b+2)=ab+2a+b+2=4ab+2≥4×$\frac{8}{9}$+2=$\frac{50}{9}$,
∴(a+1)(b+2)的最小值是$\frac{50}{9}$,
故选:B.

点评 本题主要考查基本不等式在最值中的应用,要注意检验等号成立条件是否具备,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.将函数y=sin(ωx+φ)(ω>0,|φ|<π)的图象向右平移$\frac{π}{6}$个单位,再将图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)所得的图象解析式为y=sinx,则y=sin(ωx+φ)图象上距离y轴最近的对称轴方程为(  )
A.x=-$\frac{π}{6}$B.x=$\frac{π}{3}$C.x=-$\frac{π}{12}$D.x=$\frac{π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知a、b满足等式x=a2+b2+20,y=4(2b-a),则x、y的大小关系是(  )
A.x≤yB.x≥yC.x<yD.x>y

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某学校要从艺术节活动中所产生的4名书法比赛一等奖的同学和2名绘画比赛一等奖的同学中选出3名志愿者,参加某项活动的志愿服务工作,
(1)求选出的3名志愿者都是书法比赛一等奖的同学的概率;
(2)求选出的3名志愿者中至少1名是绘画比赛一等奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.给出如下三个命题:
①“x≥2$\sqrt{2}$”是“log2(x+1)>2”的充分不必要条件;
②将函数y=sin(2x-$\frac{π}{3}$)的图象向左平移$\frac{π}{6}$个单位可得到函数y=sin2x的图象;
③$\overrightarrow{a}$,$\overrightarrow{b}$为单位向量,其夹角为θ,若|$\overrightarrow{a}$-$\overrightarrow{b}$|>1,则$\frac{π}{3}$<θ≤π.
其中正确的命题是②③.(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.平面向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{a}$+$\overrightarrow{b}$|=4,且向量$\overrightarrow{a}$与向量$\overrightarrow{a}$+$\overrightarrow{b}$的夹角为$\frac{π}{3}$,则|$\overrightarrow{b}$|为2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.(1)若复数z满足(1+i)z=2-i,求|z+i|.
(2)已知函数f(x)=x4+x2-1,g(x)=ax3+x2+b(x∈R),其中a,b∈R.
设F(x)=f(x)+g(x),若对于任意的a∈[-2,2],函数y=F(x)在区间[-1,1]上的值恒为负数,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=log2x•log2(2x)的最小值为-$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若锐角三角形的三边长分别为a-1,a,a+1,则a的取值范围是(  )
A.(1,2)B.(2,3)C.(3,4)D.(4,+∞)

查看答案和解析>>

同步练习册答案