精英家教网 > 高中数学 > 题目详情
4.函数f(x)=log2x•log2(2x)的最小值为-$\frac{1}{4}$.

分析 设log2x=t∈R,则f(x)=t(1+t)=$(t+\frac{1}{2})^{2}$$-\frac{1}{4}$,利用二次函数的单调性即可得出.

解答 解:设log2x=t∈R,
则f(x)=t(1+t)=t2+t=$(t+\frac{1}{2})^{2}$$-\frac{1}{4}$≥-$\frac{1}{4}$,当t=-$\frac{1}{2}$,即$lo{g}_{2}x=-\frac{1}{2}$,x=$\frac{\sqrt{2}}{2}$时取等号.
∴函数f(x)的最小值为-$\frac{1}{4}$.
故答案为:-$\frac{1}{4}$.

点评 本题考查了对数的运算性质、二次函数的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.甲、乙两人用4张扑克牌(分别是红桃2、红桃3、红桃4、方块4)玩游戏,它们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.
(1)设(i,j)(方块4用4′表示)分别表示甲、乙抽到的牌的数字,写出甲、乙两人抽到的牌的所有情况;
(2)甲、乙约定,若甲抽到的牌的牌面数字比乙的大,则甲胜,乙负,此游戏是否公平?请说明你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知正实数a,b满足$\frac{1}{a}$+$\frac{2}{b}$=3,则(a+1)(b+2)的最小值是(  )
A.$\frac{25}{3}$B.$\frac{50}{9}$C.7D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设集合M={-1,1},N={x|ax=1}若N⊆M,则实数a的值为(  )
A.-1B.1C.-1或1D.0或-1或1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.关于下列命题:
①设直线2x+3y+1=0和圆x2+y2-2x-3=0相交于A,B,则弦AB的垂直平分线方程是3x-2y-3=0.
②若数列{an}的前n项和Sn=(n+1)2,则{an}是等差数列;
③a,b,c是空间三条不同的直线,c是直线a在平面α内的射影,且b?a,a?α,若b⊥c则a⊥b;
④已知向量$\overrightarrow{a}=(t,2),\overrightarrow{b}$=(-3,6),若向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为锐角,则实数t的取值范围是t<4;
⑤若定义在R上的函数f(x)满足f(x+2)=f(x+1)-f(x),函数f(x)为奇函数,且f(1)=0,则在区间[-5,5]上f(x)至少有11个零点.
其中正确命题的序号是①③⑤(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=cos2x+2sinxcosx,则下列说法正确的是(  )
A.若f(x1)=f(x2),则x1-x2=kπ,k∈Z
B.f(x)的图象关于点($-\frac{3}{8}π$,0)对称
C.f(x)的图象关于直线$x=\frac{5}{8}π$对称
D.f(x)的图象向右平移$\frac{π}{4}$个单位长度后得$g(x)=\sqrt{2}sin(2x+\frac{π}{4})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某灯具厂分别在南方和北方地区各建一个工厂,生产同一种灯具(售价相同),为了了解北方与南方这两个工厂所生产的灯具质量状况,分别从这两个工厂个抽查了25件灯具进行测试,结果如下:

(I)根据频率分布直方图,请分别求出北方、南方两个工厂灯具的平均使用寿命;
(Ⅱ)某学校欲采购灯具,同时试用了南北两工厂的灯具各两件,试用500小时后,若北方工厂生产的灯具还能正常使用的数量比南方工厂多,该学校就准备采购北方工厂的灯具,否则就采购南方工厂的灯具,试估计该学校采购北方工厂的灯具的概率.(视频率为概率)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)已知lgx+lgy=2lg(x-2y),求log${\;}_{\sqrt{2}}$$\frac{x}{y}$的值;
(2)已知1og189=a,18b=5,试用a,b表示log365.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.点M是圆x2+y2-4x=0上一动点,点N(-4,4),动点P是线段MN的三等分点(靠近点N),求动点P的轨迹方程.

查看答案和解析>>

同步练习册答案