精英家教网 > 高中数学 > 题目详情

【题目】一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200(即获得-200).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.

(1)设每盘游戏获得的分数为X,求X的分布列;

(2)玩三盘游戏,至少有一盘出现音乐的概率为多少?

【答案】1)见解析(2.

【解析】

(1)根据题意分四种情况求分布列即可.

(2)求对立事件“玩三盘游戏全都没出现出现音乐”的概率再求解即可.

(1)X可能的取值为10,20,100,-200.

根据题意,有

所以X的分布列为

X

10

20

100

200

P

(2)i盘游戏没有出现音乐为事件Ai(i1,2,3),则P(A1)P(A2)P(A3)P(X=-200).

所以三盘游戏中至少有一盘出现音乐的概率为

1P(A1A2A3)11.

因此,玩三盘游戏,至少有一盘出现音乐的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若处有极值,问是否存在实数m,使得不等式对任意恒成立?若存在,求出m的取值范围;若不存在,请说明理由.

2)若,设.

①求证:当时,

②设,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直三棱柱ABC-A1B1C1中,底面△ABC是直角三角形,AC=BC=AA1=2D为侧棱AA1的中点.

1)求异面直线DC1B1C所成角的余弦值;

2)求二面角B1-DC-C1的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知点A(0,﹣2)B(40),圆C经过点(0,﹣1)(01)(0).斜率为k的直线l经过点B

1)求圆C的标准方程;

2)当k2时,过直线l上的一点P向圆C引一条切线,切点为Q,且满足PQ,求点P的坐标;

3)设MN是圆C上任意两个不同的点,若以MN为直径的圆与直线l都没有公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校书法兴趣组有3名男同学ABC和3名女同学XYZ,其年级情况如下表:

一年级

二年级

三年级

男同学

A

B

C

女同学

X

Y

Z

现从这6名同学中随机选出2人参加书法比赛每人被选到的可能性相同

用表中字母列举出所有可能的结果;

M为事件“选出的2人来自不同年级且性别相同”,求事件M发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.

Ⅰ)由折线图看出,可用线性回归模型拟合yt的关系,请用相关系数加以说明;

Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.

附注:

参考数据:

≈2.646.

参考公式:相关系数

回归方程中斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面是菱形,且.

(1)证明:平面.

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司培训员工某项技能,培训有如下两种方式:

方式一:周一到周五每天培训1小时,周日测试

方式二:周六一天培训4小时,周日测试

公司有多个班组,每个班组60人,现任选两组记为甲组、乙组先培训;甲组选方式一,乙组选方式二,并记录每周培训后测试达标的人数如表:

第一周

第二周

第三周

第四周

甲组

20

25

10

5

乙组

8

16

20

16

用方式一与方式二进行培训,分别估计员工受训的平均时间精确到,并据此判断哪种培训方式效率更高?

在甲乙两组中,从第三周培训后达标的员工中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求这2人中至少有1人来自甲组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,直线与函数的图象在处相切,设,若在区间[1,2]上,不等式恒成立.则实数m( )

A. 有最大值 B. 有最大值e C. 有最小值e D. 有最小值

查看答案和解析>>

同步练习册答案