精英家教网 > 高中数学 > 题目详情
18.形如y=$\frac{b}{|x|-c}$(c>0,b>0)的函数因其图象类似于汉字中的“囧”字,故我们把其生动地称为“囧函数”.若函数f(x)=loga(x2+x+1)(a>0,a≠1)有最小值,则当c,b的值分别为方程x2+y2-2x-2y+2=0中的x,y时的“囧函数”与函数y=loga|x|的图象交点个数为(  )
A.1B.2C.4D.6

分析 由题意可得a>1,c=b=1,这时“囧函数”为$y=\frac{1}{|x|-1}$,它与函数y=loga|x|在同一坐标系内的图象如图所示,数形结合求得它们的图象交点个数.

解答 解:令u=x2+x+1,则$f(x)={log_a}({{x^2}+x+1})$是y=logau与u=x2+x+1复合函数,
∵$u={(x+\frac{1}{2})^2}+\frac{3}{4}≥\frac{3}{4}$,当y=logau是增函数,$u∈[\frac{3}{4},+∞)$时有最小值,
所以,a>1;x2+y2-2x-2y+2=0,
即(x-1)2+(y-1)2=0,可得x=y=1,
所以,c=b=1,这时“囧函数”为$y=\frac{1}{|x|-1}$,
它与函数y=loga|x|在同一坐标系内的图象如图所示,
数形结合可得它们的图象交点个数为4,
故选:C.

点评 本题主要考查函数的图象特征,两个函数的图象交点个数,体现了转化、数形结合的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.若某中学高二年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数是(  )
A.91.5B.92.5C.91D.92

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设等差数列{an}的前n项和为Sn,且满足an+Sn=An2+Bn+C,若A=5,C=1,则B=16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.f(3x)=x,则f(10)=(  )
A.log310B.lg3C.103D.310

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.过点P(-2,0)的直线与抛物线C:y2=4x相交于A,B两点,且|PA|=$\frac{1}{2}$|AB|,则点A到抛物线C的焦点的距离为$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知a,b是常数,函数$f(x)=a{x^3}+bln(x+\sqrt{{x^2}+1})+5$在(-∞,0)上的最大值为16,则f(x)在(0,+∞)上的最小值为-6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若x1,x2,x3,…,xn的平均数为$\overline x$,则x1+a,x2+a,…,xn+a的平均数为(  )
A.$\overline x+a$B.$a\overline x$C.${a^2}\overline x$D.$\overline x+{a^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若以F1(-3,0),F2(3,0)为焦点的双曲线与直线y=x-1有公共点,则该双曲线的离心率的最小值为(  )
A.$\frac{\sqrt{6}}{2}$B.$\frac{3\sqrt{5}}{5}$C.$\frac{3}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知α,β∈($\frac{7π}{4}$,$\frac{9π}{4}$),则“tan2α>tan2β”是“3α>3β”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案