精英家教网 > 高中数学 > 题目详情

【题目】函数f(x)=cos( x+ )的图象向右平移φ(φ>0)个单位,所得函数图象关于y轴对称,则φ的最小值为

【答案】
【解析】解:∵函数f(x)=cos( x+ )的图象向右平移φ个单位,

所得图象对应的函数解析式为:y=cos( φ+

由于其图象关于y轴对称,

φ+ =kπ,k∈z,

∴φ= ﹣2kπ,k∈z,

由φ>0,可得:当k=0时,φ的最小正值是

所以答案是:

【考点精析】通过灵活运用函数y=Asin(ωx+φ)的图象变换,掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】不等式组 表示的平面区域为M,直线y=kx﹣1与区域M没有公共点,则实数k的最大值为(
A.3
B.0
C.﹣3
D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln(a﹣ )(a∈R).若关于x的方程ln[(4﹣a)x+2a﹣5]﹣f(x)=0的解集中恰好有一个元素,则实数a的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥S﹣ABC中,E为棱SC的中点,若AC=2 ,SA=SB=AB=BC=SC=2,则异面直线AC与BE所成的角为(

A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆 的离心率 ,椭圆上一点A到椭圆C两焦点的距离之和为4.
(1)求椭圆C的方程;
(2)直线l与椭圆交于A,B两点,且AB中点为 ,求直线l方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题:
(1)利用计算机产生0~1之间的均匀随机数a,则事件“3a﹣1>0”发生的概率为
(2)“x+y≠0”是“x≠1或y≠﹣1”的充分不必要条件;
(3)如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β;
(4)设 是非零向量,已知命题p:若 ,则 ;命题q:若 ,则 ,则“p∨q”是真命题.
其中说法正确的个数是( )
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)对任意的x都有f(x+2)﹣f(x)=﹣4x+4,且f(0)=0.
(1)求函数f(x)的解析式;
(2)设函数g(x)=f(x)+m,(m∈R). ①若存在实数a,b(a<b),使得g(x)在区间[a,b]上为单调函数,且g(x)取值范围也为[a,b],求m的取值范围;
②若函数g(x)的零点都是函数h(x)=f(f(x))+m的零点,求h(x)的所有零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知E,F分别是棱长为1的正方体ABCD﹣A1B1C1D1的棱BC,CC1的中点,则截面AEFD1与底面ABCD所成二面角的正弦值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某机械厂今年进行了五次技能考核,其中甲、乙两名技术骨干得分的平均分相等,成绩统计情况如茎叶图所示(其中a是0﹣9的某个整数

(1)若该厂决定从甲乙两人中选派一人去参加技能培训,从成绩稳定性角度考虑,你认为谁去比较合适?
(2)若从甲的成绩中任取两次成绩作进一步分析,在抽取的两次成绩中,求至少有一次成绩在(90,100]之间的概率.

查看答案和解析>>

同步练习册答案