【题目】如图,在三棱锥S﹣ABC中,E为棱SC的中点,若AC=2
,SA=SB=AB=BC=SC=2,则异面直线AC与BE所成的角为( ) ![]()
A.30°
B.45°
C.60°
D.90°
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱ABC﹣A1B1C1中,侧棱AA1⊥平面ABC.若AB=AC=AA1=1,BC=
,则异面直线A1C与B1C1所成的角为( ) ![]()
A.30°
B.45°
C.60°
D.90°
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
(a>b>0)的左、右焦点为F1(﹣2,0),F2(2,0),点M(﹣2,
) 在椭圆C上.
(1)求椭圆C的标准方程;
(2)已知斜率为k的直线l过椭圆C的右焦点F2 , 与椭圆C相交于A,B两点.
①若|AB|=
,求直线l的方程;
②设点P(
,0),证明:
为定值,并求出该定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆x2+y2+x﹣6y+m=0和直线x+2y﹣3=0交于P、Q两点,
(1)求实数m的取值范围;
(2)求以PQ为直径且过坐标原点的圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<
)在某一个周期内的图象时,列表并填入了部分数据,如表:
ωx+φ | 0 |
| π |
| 2π |
x | | | |||
f(x) | 0 | 3 | 0 | ﹣3 | 0 |
(1)请将表中数据补充完整,并直接写出函数f(x)的解析式;
(2)若将函数f(x)的图象上所有点的横坐标变为原来的2倍,纵坐标不变,得到函数g(x)的图象,求当x∈[﹣
,
]时,函数g(x)的值域;
(3)若将y=f(x)图象上所有点向左平移θ(θ>0)个单位长度,得到y=h(x)的图象,若=h(x)图象的一个对称中心为(
),求θ的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤
),x=﹣
为f(x)的零点,x=
为y=f(x)图象的对称轴,且f(x)在(
,
)单调,则ω的最大值为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列各命题中不正确的是( )
A.函数f(x)=ax+1(a>0,a≠1)的图象过定点(﹣1,1)
B.函数
在[0,+∞)上是增函数
C.函数f(x)=logax(a>0,a≠1)在(0,+∞)上是增函数
D.函数f(x)=x2+4x+2在(0,+∞)上是增函数
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com