【题目】已知二次函数f(x)对任意的x都有f(x+2)﹣f(x)=﹣4x+4,且f(0)=0.
(1)求函数f(x)的解析式;
(2)设函数g(x)=f(x)+m,(m∈R). ①若存在实数a,b(a<b),使得g(x)在区间[a,b]上为单调函数,且g(x)取值范围也为[a,b],求m的取值范围;
②若函数g(x)的零点都是函数h(x)=f(f(x))+m的零点,求h(x)的所有零点.
【答案】
(1)解:设二次函数f(x)的解析式为f(x)=ax2+bx+c,
则f(x+2)﹣f(x)=a(x+2)2+b(x+2)+c﹣(ax2+bx+c)=4ax+4a+2b
由f(x+2)﹣f(x)=﹣4x+4得(4a+4)x+4a+2b﹣4=0恒成立,又f(0)=0
所以 ,所以 ,所以f(x)=﹣x2+4x
(2)解:g(x)=﹣x2+4x+m,对称轴x=2,g(x)在区间[a,b]上单调,所以b≤2或a≥2
①1°当b≤2时,g(x)在区间[a,b]上单调增,所以 ,即a,b为g(x)=x的两个根,
所以只要g(x)=x有小于等于2两个不相等的实根即可,
所以x2﹣3x﹣m=0要满足 ,得
2°当a≥2时,g(x)在区间[a,b]上单调减,所以 ,即
两式相减得(b﹣a)(a+b﹣5)=0,因为b>a,所以a+b﹣5=0,
所以m=a2﹣5a+5, ,得
综上,m的取值范围为
②(法一)设x0为g(x)的零点,则 ,即 ,
即﹣m2﹣4m+m=0,得m=0或m=﹣3
1°当m=0时,h(x)=﹣(﹣x2+4x)2+4(﹣x2+4x)=﹣x(x﹣4)(x2﹣4x+4)
所以h(x)所有零点为0,2,4
2°当m=﹣3时,h(x)=﹣(﹣x2+4x)2+4(﹣x2+4x)﹣3=﹣(﹣x2+4x﹣3)(﹣x2+4x﹣1)
(因为必有因式﹣x2+4x﹣3,所以容易分解因式)
由﹣x2+4x﹣3=0和﹣x2+4x﹣1=0得 ,
所以h(x)所有零点为
(法二)函数g(x)的零点都是函数h(x)的零点,
所以﹣(﹣x2+4x)2+4(﹣x2+4x)+m中必有因式﹣x2+4x+m,
所以可设:﹣(﹣x2+4x)2+4(﹣x2+4x)+m=﹣(﹣x2+4x+m)(﹣x2+sx+t)
展开对应系数相等得 或 (下同法一).
【解析】(1)设二次函数f(x)的解析式为f(x)=ax2+bx+c,利用待定系数法求解即可.(2)g(x)=﹣x2+4x+m,对称轴x=2,g(x)在区间[a,b]上单调,b≤2或a≥2,①1°当b≤2时,2°当a≥2时,列出不等式组,求解m的取值范围为 ;②(法一)设x0为g(x)的零点,则 ,求出m=0或m=﹣3,1°当m=0时,求出h(x)所有零点为0,2,4;2°当m=﹣3时,求出h(x)所有零点为 ;
(法二)函数g(x)的零点都是函数h(x)的零点,﹣(﹣x2+4x)2+4(﹣x2+4x)+m=﹣(﹣x2+4x+m)(﹣x2+sx+t),展开对应系数相等求解即可.
【考点精析】认真审题,首先需要了解二次函数的性质(增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小).
科目:高中数学 来源: 题型:
【题目】已知{an}是各项均为正数的等比数列,{bn}是等差数列,且a1=b1=1,b2+b3=2a3 , a5﹣3b2=7.
(1)求{an}和{bn}的通项公式;
(2)设cn=anbn , n∈N* , 求数列{cn}的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆x2+y2+x﹣6y+m=0和直线x+2y﹣3=0交于P、Q两点,
(1)求实数m的取值范围;
(2)求以PQ为直径且过坐标原点的圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤ ),x=﹣ 为f(x)的零点,x= 为y=f(x)图象的对称轴,且f(x)在( , )单调,则ω的最大值为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方形ABCD中边长为1,P、Q分别为BC、CD上的点,△CPQ周长为2.
(1)求PQ的最小值;
(2)试探究求∠PAQ是否为定值,若是给出证明;不是说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,底面是边长为2的正三角形,侧棱长为3,则BB1与平面AB1C1所成的角是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆 + =1(a>b>0)的左、右焦点分别为F1、F2 , P是椭圆上一点,|PF1|=λ|PF2|( ≤λ≤2),∠F1PF2= ,则椭圆离心率的取值范围为( )
A.(0, ]
B.[ , ]
C.[ , ]
D.[ ,1)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com