精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥P-ABCD中,底面ABCD为矩形,PD垂直于底面ABCDAD=PD=2

EF分别为CDPB的中点.

1)求证:EF⊥平面PAB

2)设,求直线AC与平面AEF所成角θ的正弦值.

【答案】(1)见解析;(2)

【解析】

(1)求出直线EF所在的向量,再求出平面内两条相交直线所在的向量,然后利用向量的数量积为0,根据线面垂直的判定定理得到线面垂直.

(2)求出平面的法向量以及直线所在的向量,再利用向量的有关运算求出两个向量的夹角,进而转化为线面角,即可解决问题.

解:以D为从标原点,DCDADP所在直线分别为x轴、y轴、z轴,建立空间直角坐标系D-xyz.设AB=a

A(0,2,0),Ba,2,0),Ca,0,0),D(0,0,0,),p(0,0,2),

(1)由题意可得:=0×0+1×2+1×(-2)=0,=0×a+1×2+1×(-2)=0

EFPAEFPB

EF⊥平面PAB

(2)AB=2=(0,1,1).

设平面AEF的法向量

y=1,则x=,所以

所以sinθ=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数

1)若函数R上的单调函数,求实数a的取值范围;

2a ( ) 的导函数①若对任意的x0 0,求证:存在,使0;②若求证

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数上是减函数,求实数的取值范围;

(2)令,是否存在实数,当是自然常数)时,函数的最小值是3,若存在,求出的值;若不存在,说明理由.

(3)当时,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数下列命题:( )

函数的图象关于原点对称; 函数是周期函数;

,函数取最大值;函数的图象与函数的图象没有公共点,其中正确命题的序号是

(A)①③ (B)②③ (C)①④ (D)②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市交通部门为了对该城市共享单车加强监管,随机选取了100人就该城市共享单车的推行情况进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照分成5组,制成如图所示频率分直方图.

1)求图中x的值;

2)求这组数据的平均数和中位数;

3)已知满意度评分值在内的男生数与女生数3:2,若在满意度评分值为的人中随机抽取2人进行座谈,求2人均为男生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆和双曲线有共同焦点是它们的一个交点,且,记椭圆和双曲线的离心率分别为,则的最大值为( )

A. 3B. 2C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面内两点M4,﹣2),N24.

1)求MN的垂直平分线方程;

2)直线l经过点A30),且点M和点N到直线l的距离相等,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在直三棱柱中, ,点分别是的中点.

(1)求证: ∥平面

(2)若,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,点到两点的距离之和为4,设点的轨迹为,直线交于两点。

(Ⅰ)写出的方程;

(Ⅱ)若,求的值。

查看答案和解析>>

同步练习册答案