精英家教网 > 高中数学 > 题目详情
7.设点P(x,y)经过变换$\left\{\begin{array}{l}{x′=2x+y}\\{y′=x-2y}\end{array}\right.$(*)变为点Q(x′,y′).
(1)点P1(x1,y1),P2(x2,y2)经过变换变为点Q1(x′1,y′1),Q2(x′2,y′2),试探索线段长度|P1P2|与|Q1Q2|之间的数量关系;
(2)是否存在这样的直线:它上面的任一点经变换(*)后得到的点仍在该直线上?若存在,试求出所有这些直线;若不存在,则说明理由.
(3)可以证明,作为点的集合,直线,射线,线段和角经过变换(*)依次仍变为直线、射线、线段和角,设点P1,P2,P3不在一直线上,∠P1P2P3经变换(*)变为∠Q1Q2Q3,问是否总有“∠P1P2P3=∠Q1Q2Q3”?请简述主要理由.

分析 (1)利用两点之间的距离的距离公式可得:|P1P2|=$\sqrt{({x}_{1}-{x}_{2})^{2}+({y}_{1}-{y}_{2})^{2}}$,|Q1Q2|=$\sqrt{({x}_{1}^{′}-{x}_{2}^{′})^{2}+({y}_{1}^{′}-{y}_{2}^{′})^{2}}$=$\sqrt{5}$|P1P2|.
(2)假设存在这样的直线:当斜率存在时,直线方程为:y=kx+b,它上面的任一点(x,y)经变换(*)后得到的点(x′,y′)仍在该直线上.则y′=kx′+b,即x-2y=k(2x+y)+b,化为(2k-1)x+(k+2)y+b=0,与直线kx-y+b=0比较可得:$\left\{\begin{array}{l}{2k-1=k}\\{k+2=-1}\end{array}\right.$,解出即可判断出结论.当斜率不存在时,同理可以判断出结论.
(2)设点P1(x1,y1),P2(x2,y2),P3(x3,y3),Qi$({x}_{i}^{′},{y}_{i}^{′})$(i=1,2,3),利用斜率计算公式与变换公式、夹角公式计算即可判断出.

解答 解:(1)|P1P2|=$\sqrt{({x}_{1}-{x}_{2})^{2}+({y}_{1}-{y}_{2})^{2}}$,|Q1Q2|=$\sqrt{({x}_{1}^{′}-{x}_{2}^{′})^{2}+({y}_{1}^{′}-{y}_{2}^{′})^{2}}$=$\sqrt{(2{x}_{1}+{y}_{1}-2{x}_{2}-{y}_{2})^{2}+({x}_{1}-2{y}_{1}-{x}_{2}+2{y}_{2})^{2}}$=$\sqrt{5}$$\sqrt{({x}_{1}-{x}_{2})^{2}+({y}_{1}-{y}_{2})^{2}}$,
∴|Q1Q2|=$\sqrt{5}$|P1P2|.
(2)假设存在这样的直线:当斜率存在时,直线方程为:y=kx+b,它上面的任一点(x,y)经变换(*)后得到的点(x′,y′)仍在该直线上.
则y′=kx′+b,即x-2y=k(2x+y)+b,化为(2k-1)x+(k+2)y+b=0,与直线kx-y+b=0比较可得:$\left\{\begin{array}{l}{2k-1=k}\\{k+2=-1}\end{array}\right.$,此方程无解,此时假设不成立;
当斜率不存在时,直线方程为:x=b,它上面的任一点(x,y)经变换(*)后得到的点(x′,y′)仍在该直线上.
则x′=2x+y=b,由于y的任意性可知:此时假设不成立.
综上可得:不存在这样的直线:它上面的任一点经变换(*)后得到的点仍在该直线上.
(2)设点P1(x1,y1),P2(x2,y2),P3(x3,y3),Qi$({x}_{i}^{′},{y}_{i}^{′})$(i=1,2,3),
不妨假设角的两边所在直线斜率存在,${k}_{{P}_{2}{P}_{1}}$=$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$=k1,${k}_{{P}_{2}{P}_{3}}$=$\frac{{y}_{3}-{y}_{2}}{{x}_{3}-{x}_{2}}$=k2.假设P2P1为始边,P2P3为终边.
则tan∠P1P2P3=$\frac{{k}_{2}-{k}_{1}}{1+{k}_{1}{k}_{2}}$.
变换(*)变为∠Q1Q2Q3,问是否总有“∠P1P2P3=∠Q1Q2Q3”?请简述主要理由.
则${k}_{{Q}_{2}{Q}_{1}}$=$\frac{{y}_{2}^{′}-{y}_{1}^{′}}{{x}_{2}^{′}-{x}_{1}^{′}}$=$\frac{{x}_{2}-2{y}_{2}-({x}_{1}-2{y}_{1})}{2{x}_{2}+{y}_{2}-(2{x}_{1}+{y}_{1})}$=$\frac{1-2{k}_{1}}{2+{k}_{1}}$,同理可得:${k}_{{Q}_{2}{Q}_{3}}$=$\frac{1-2{k}_{2}}{2+{k}_{2}}$.
tan∠Q1Q2Q3=$\frac{\frac{1-2{k}_{2}}{2+{k}_{2}}-\frac{1-2{k}_{1}}{2+{k}_{1}}}{1+\frac{1-2{k}_{2}}{2+{k}_{2}}•\frac{1-2{k}_{1}}{2+{k}_{1}}}$=$\frac{{k}_{1}-{k}_{2}}{1+{k}_{1}{k}_{2}}$=-tan∠P1P2P3
因此不是总有“∠P1P2P3=∠Q1Q2Q3”.

点评 本题考查了两点之间的距离的距离公式、斜率计算公式、夹角公式、变换公式,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.设P=log35,Q=log52,R=log2(log32),则它们由小到大的顺序为R、Q、P.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.对任意实数,若f(x+m)=$\frac{1-f(x)}{1+f(x)}$(m>0)成立,
①证明f(x)是以2m为周期的函数;
②若f(x)在(-m,m]上的解析式是f(x)=x2,写出f(x)在区间(m,3m]及R上的解析式(不必写过程)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.对于函数f(x)=x2+x+1作x=h(t)的代换,则不改变函数f(x)的值域的代换是x=t-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=\frac{(x+1)(x+a)}{x^2}$为偶函数
(1)求实数a的值;
(2)当$x∈[\frac{1}{m},\frac{1}{n}](m>0,n>0)$时,若函数f(x)的值域为[2-3m,2-3n],求m,n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an}满足a1=1,a2=3,an+2=$\frac{1}{2}$an,若数列{an}的前2n项和S2n<3p+1恒成立,则实数p的取值范围是[$\frac{7}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知$\overrightarrow{p}$=(a,b),$\overrightarrow{q}$=(c,d),规定向量$\overrightarrow{p}$,$\overrightarrow{q}$之间的一个运算符号“*”,$\overrightarrow{p}$*$\overrightarrow{q}$=(ac-bd,ad+bc),若$\overrightarrow{p}$=(0,1),$\overrightarrow{p}$*$\overrightarrow{q}$=(-4,-3),则$\overrightarrow{q}$等于(  )
A.(3,-4)B.(3,4)C.(-3,4)D.(-3,-4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知直线l的斜率为1,且与圆C:(x-3)2+(y-4)2=4相交,截得的弦长为2$\sqrt{2}$.
(1)求直线l的方程;
(2)设Q点的坐标为(2,3),且动点M到圆C的切线长与|MQ|的比值为实数k(k>0),若动点M的轨迹方程是圆,试确定k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系上,是否存在一个含有无穷多条直线l1,l2,…,ln,…的直线族,它满足条件:①点(1,1)∈ln,(n=1,2,3,…);②kn+1=an-bn,其中kn+1是l的斜率,an和bn分别是ln在x轴和y轴上的截距,(n=1,2,3,…);③knkn+1≥0,(n=1,2,3,…),并证明你的结论.

查看答案和解析>>

同步练习册答案