分析 ①根据周期函数的定义以及所给的关系式即可证明;
②根据f(x)是以2m为周期的函数,即可得到f(x)在区间(m,3m]及R上的解析式.
解答 解:①证明:f(x+2m)=$\frac{1-f(x+m)}{1+f(x+m)}$=$\frac{1-\frac{1-f(x)}{1+f(x)}}{1+\frac{1-f(x)}{1+f(x)}}$=f(x),
∴f(x)是以2m为周期的函数;
②∵x∈(m,3m],
∴x-2m∈(-m,m],
∴f(x-2m)=f(x-2m)2,
∴f(x)=f(x-2m)2.
∴f(x)在区间(m,3m]上的解析式为f(x)=(x-2m)2.
∴f(x)在R上的解析式为f(x)=(x-2m)2.
点评 本题考查了周期函数的定义和周期函数的应用,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | a<b<c | B. | a<c<b | C. | c<b<a | D. | b<a<c |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{3}{8}$+k,$\frac{1}{8}$+k)(k∈Z) | B. | (-$\frac{1}{8}$+k,$\frac{1}{8}$+k)(k∈Z) | C. | ($\frac{1}{8}$+k,$\frac{5}{8}$+k)(k∈Z) | D. | ($\frac{1}{8}$+k,$\frac{3}{8}$+k)(k∈Z) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-2)∪(2,+∞) | B. | (-∞,-2)∪(1,2) | C. | (-2,1)∪(2,+∞) | D. | (-2,1)∪(1,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com