精英家教网 > 高中数学 > 题目详情
18.对任意实数,若f(x+m)=$\frac{1-f(x)}{1+f(x)}$(m>0)成立,
①证明f(x)是以2m为周期的函数;
②若f(x)在(-m,m]上的解析式是f(x)=x2,写出f(x)在区间(m,3m]及R上的解析式(不必写过程)

分析 ①根据周期函数的定义以及所给的关系式即可证明;
②根据f(x)是以2m为周期的函数,即可得到f(x)在区间(m,3m]及R上的解析式.

解答 解:①证明:f(x+2m)=$\frac{1-f(x+m)}{1+f(x+m)}$=$\frac{1-\frac{1-f(x)}{1+f(x)}}{1+\frac{1-f(x)}{1+f(x)}}$=f(x),
∴f(x)是以2m为周期的函数;
②∵x∈(m,3m],
∴x-2m∈(-m,m],
∴f(x-2m)=f(x-2m)2
∴f(x)=f(x-2m)2
∴f(x)在区间(m,3m]上的解析式为f(x)=(x-2m)2
∴f(x)在R上的解析式为f(x)=(x-2m)2

点评 本题考查了周期函数的定义和周期函数的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.若a=($\frac{2}{3}$)${\;}^{\frac{1}{2}}$,b=($\frac{1}{2}$)${\;}^{\frac{3}{2}}$,c=log${\;}_{\frac{2}{3}}$$\frac{1}{2}$,则(  )
A.a<b<cB.a<c<bC.c<b<aD.b<a<c

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,2sinAcosB=sinCcosB+cosCsinB,角B=60°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数y=log${\;}_{\frac{1}{3}}$sin(2πx+$\frac{π}{4}$)的单调递减区间是(  )
A.(-$\frac{3}{8}$+k,$\frac{1}{8}$+k)(k∈Z)B.(-$\frac{1}{8}$+k,$\frac{1}{8}$+k)(k∈Z)C.($\frac{1}{8}$+k,$\frac{5}{8}$+k)(k∈Z)D.($\frac{1}{8}$+k,$\frac{3}{8}$+k)(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.定义在R上的偶函数f(x)满足:对任意的x1,x2∈(-∞,0](x1≠x2),有$\frac{{f({x_2})-f({x_1})}}{{{x_2}-{x_1}}}<0$,且f(2)=0,则不等式$\frac{2f(x)+f(-x)}{5(x-1)}$<0的解集是(  )
A.(-∞,-2)∪(2,+∞)B.(-∞,-2)∪(1,2)C.(-2,1)∪(2,+∞)D.(-2,1)∪(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=|x-1|-|2x-a|
(1)当a=5时,求不等式f(x)≥0的解集;
(2)设不等式f(x)≥3的解集为A,若5∈A,6∉A,求整数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=1-$\sqrt{1-2x}$,g(x)=lnx,对于任意m≤$\frac{1}{2}$,都存在n∈(0,+∞),使得f(m)=g(n),则n-m的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设点P(x,y)经过变换$\left\{\begin{array}{l}{x′=2x+y}\\{y′=x-2y}\end{array}\right.$(*)变为点Q(x′,y′).
(1)点P1(x1,y1),P2(x2,y2)经过变换变为点Q1(x′1,y′1),Q2(x′2,y′2),试探索线段长度|P1P2|与|Q1Q2|之间的数量关系;
(2)是否存在这样的直线:它上面的任一点经变换(*)后得到的点仍在该直线上?若存在,试求出所有这些直线;若不存在,则说明理由.
(3)可以证明,作为点的集合,直线,射线,线段和角经过变换(*)依次仍变为直线、射线、线段和角,设点P1,P2,P3不在一直线上,∠P1P2P3经变换(*)变为∠Q1Q2Q3,问是否总有“∠P1P2P3=∠Q1Q2Q3”?请简述主要理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.F为抛物线C:y2=4x的焦点,P为C上的一点,以P为圆心,PF为半径的圆与直线y=4相切,则点P的坐标为(1,2)或(9,-6).

查看答案和解析>>

同步练习册答案