精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=|x-1|-|2x-a|
(1)当a=5时,求不等式f(x)≥0的解集;
(2)设不等式f(x)≥3的解集为A,若5∈A,6∉A,求整数a的值.

分析 (1)当a=5时,不等式即|x-1|-|2x-5|≥0,移项平方,可得它的解集.
(2)根据条件可得$\left\{\begin{array}{l}{|5-1|-|10-a|≥3}\\{|6-1|-|12-a|<3}\end{array}\right.$,由此求得a的范围,从而求得a的值.

解答 解:(1)当a=5时,不等式f(x)≥0可化为:|x-1|-|2x-5|≥0,
等价于(x-1)2≥(2x-5)2,解得2≤x≤4,
∴不等式f(x)≥0的解集为[2,4].
(2)据题意,由不等式f(x)≥3的解集为A,若5∈A,6∉A,
可得:$\left\{\begin{array}{l}{|5-1|-|10-a|≥3}\\{|6-1|-|12-a|<3}\end{array}\right.$,解得$\left\{\begin{array}{l}{9≤a≤11}\\{a<10或a>14}\end{array}\right.$,∴9≤a<10.
又∵a∈Z,∴a=9.

点评 本题主要考查绝对值不等式的解法,体现了转化的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.在△ABC中,角A、B、C对应的边分别为a、b、c,且A+B=$\frac{π}{3}$.
(1)求sinAcosB+cosAsinB的值;
(2)若a=1,b=2,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列说法正确的个数是(  )
①∅=0;②∅={0};③∅={∅};④0∈∅;⑤0∈{0};⑥∅∈{∅};⑦∅?{∅}.
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的各项均为整数,其前n项和为Sn.规定:若数列{an}满足前r项依次成公差为1的等差数列,从第r-1项起往后依次成公比为2的等比数列,则称数列{an}为“r关联数列”.
(1)若数列{an}为“6关联数列”,求数列{an}的通项公式;
(2)在(1)的条件下,求出Sn,并证明:对任意n∈N*,anSn≥a6S6
(3)已知数列{an}为“r关联数列”,且a1=-10,是否存在正整数k,m(m>k),使得a1+a2+…+ak-1+ak=a1+a2+…+am-1+am?若存在,求出所有的k,m值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.对任意实数,若f(x+m)=$\frac{1-f(x)}{1+f(x)}$(m>0)成立,
①证明f(x)是以2m为周期的函数;
②若f(x)在(-m,m]上的解析式是f(x)=x2,写出f(x)在区间(m,3m]及R上的解析式(不必写过程)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在△ABC中,角A,B,C的对应边分别为a,b,c,若${a^2}+{b^2}-{c^2}=\sqrt{3}ab$,则角C的值为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{6}$或$\frac{5π}{6}$D.$\frac{π}{3}$或$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.对于函数f(x)=x2+x+1作x=h(t)的代换,则不改变函数f(x)的值域的代换是x=t-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知数列{an}满足a1=1,a2=3,an+2=$\frac{1}{2}$an,若数列{an}的前2n项和S2n<3p+1恒成立,则实数p的取值范围是[$\frac{7}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=$\left\{\begin{array}{l}{5-(x+2)^{2},x<0}\\{{e}^{x}+x,x≥0}\end{array}\right.$,给出如下三个命题:
①函数f(x)在(-5,-3)上单调递增;
②不等式f(x)≤1的解集为(-∞,-4];
③函数f(x)在[-3,2]上的最大值为e2+2,最小值为2,
其中真命题的个数为1.

查看答案和解析>>

同步练习册答案