精英家教网 > 高中数学 > 题目详情
在△ABC中,已知
AB
=(2,1)
AC
=(3,k)
(k∈R),则
BC
=
(1,k-1)
(1,k-1)
;若∠B=90°,则k=
-1
-1
_.
分析:
BC
=
AC
-
AB
可求,若∠B=90°则
BA
BC
,从而有
BA
BC
=0
,可求k
解答:解:∵
BC
=
AC
-
AB

=(3,k)-(2,1)=(1,k-1)
∵∠B=90°
BA
BC

BA
BC
=(-2,-1)•(1,k-1)
=-2-(k-1)=-1-k=0
∴k=-1
故答案为(1,k-1);-1
点评:本题主要考查了向量减法的三角形法则的应用,向量数量积的性质的应用,属于基础试题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,已知A、B、C成等差数列,求tg(
A
2
)+
3
tg(
A
2
)tg(
C
2
)+tg(
C
2
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知A=45°,a=2,b=
2
,则B等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知a=
3
,b=
2
,1+2cos(B+C)=0,求:
(1)角A,B; 
(2)求BC边上的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知A=60°,
AB
AC
=1,则△ABC的面积为
3
2
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知a=1,b=2,cosC=
34

(1)求AB的长;
(2)求sinA的值.

查看答案和解析>>

同步练习册答案