精英家教网 > 高中数学 > 题目详情
4.设x,y满足约束条件$\left\{\begin{array}{l}{\frac{x}{3a}+\frac{y}{4a}≤1}\\{y≥0}\\{x≥0}\end{array}\right.$,若z=$\frac{x+2y+3}{x+1}$的最小值为$\frac{3}{2}$,则a的值为(  )
A.1B.2C.3D.4

分析 根据分式的意义将分式进行化简,结合斜率的意义,得到$\frac{y+1}{x+1}$的最小值是$\frac{1}{4}$,利用数形结合进行求解即可.

解答 解:z=$\frac{x+2y+3}{x+1}$=$\frac{x+1+2(y+1)}{x+1}$=1+2•$\frac{y+1}{x+1}$,
若z=$\frac{x+2y+3}{x+1}$的最小值为$\frac{3}{2}$,
即1+2•$\frac{y+1}{x+1}$的最小值为$\frac{3}{2}$,
由1+2•$\frac{y+1}{x+1}$=$\frac{3}{2}$,得$\frac{y+1}{x+1}$的最小值是$\frac{1}{4}$,
作出不等式组对应的平面区域,即$\frac{y+1}{x+1}$的几何意义是区域内的点P(x,y)到定点D(-1,-1)的斜率的最小值是$\frac{1}{4}$,
由图象知BD的斜率最小,由$\left\{\begin{array}{l}{\frac{x}{3}+\frac{y}{4}=a}\\{y=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=3a}\\{y=0}\end{array}\right.$,
即B(3a,0),
则$\frac{0+1}{3a+1}$=$\frac{1}{4}$,即3a+1=4,则3a=3,
则a=1,
故选:A.

点评 本题主要考查线性规划的应用,结合分式的性质以及直线斜率的定义,利用数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.从装有3个红球和3个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是(  )
A.“至少有一个红球”与“都是黑球”
B.“恰有1个黑球”与“恰有2个红球”
C.“至少有一个黑球”与“至少有1个红球”
D.“至少有一个黑球”与“都是黑球”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.圆x2+2x+y2-3=0的圆心到直线y=x+3的距离是(  )
A.1B.2C.$\sqrt{2}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.直线$\frac{x}{4}$-$\frac{y}{3}$=1的横、纵截距分别是(  )
A.4,3B.4,-3C.$\frac{1}{4},\frac{1}{3}$D.$\frac{1}{4},-\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.集合{x∈N*|x-3<2}的另一种表示法是(  )
A.{0,1,2,3,4}B.{1,2,3,4}C.{0,1,2,3,4,5}D.{1,2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,且|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=2,则$\overrightarrow{a}$•$\overrightarrow{b}$=(  )
A.2B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源:2017届山东临沭一中高三上学期10月月考数学(文)试卷(解析版) 题型:解答题

已知,解关于的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若抛物线C:y=ax2-1(a≠0)上有不同两点关于直线l:y+x=0对称,则实数a的取值范围是($\frac{3}{4}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知集合A={x||x|<2},B={-1,0,1,2,3},则A∩B={-1,0,1}.

查看答案和解析>>

同步练习册答案