精英家教网 > 高中数学 > 题目详情
已知六棱锥的底面是正六边形,,则直线所成的角为         

试题分析:连接,则为所求的角,设六边形边长为,所以
,所以.所以所成的角为.
点评:本题考查的知识点是正六边形的几何特征,线面平行和线面垂直的判定,其中要判断线面角,关键是作出角,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知是两两不重合的三个平面,下列命题中错误的是(    )
A.若,则B.若,则
C.若,则D.若,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥E—ABCD中,ABCD是矩形,平面EAB平面ABCD,AE=EB=BC=2,F为CE上的点,且BF平面AC E.

(1)求证:AEBE;
(2)求三棱锥D—AEC的体积;
(3)求二面角A—CD—E的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图所示,空间四边形ABCD中,AB=CD,AB⊥CD,E、F分别为BC、AD的中点,则EF和AB所成的角为             

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,S是正方形ABCD所在平面外一点,且SD⊥面ABCD ,AB=1,SB=.

(1)求证:BCSC;
(2) 设M为棱SA中点,求异面直线DMSB所成角的大小
(3) 求面ASD与面BSC所成二面角的大小;

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在三棱柱中,各棱长相等,侧棱垂直于底面,点是侧面的中心,则与平面所成角的大小是 (    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面为直角梯形,且,侧面底面. 若.

(Ⅰ)求证:平面
(Ⅱ)侧棱上是否存在点,使得平面?若存在,指出点 的位置并证明,若不存在,请说明理由;
(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在正三棱柱中,的中点,是线段上的动点(与端点不重合),且.

(1)若,求证:;
(2)若直线与平面所成角的大小为,求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四边形ABCD是正方形,PB^平面ABCD,MA^平面ABCD,PB=AB=2MA.

求证:(1)平面AMD∥平面BPC;(2)平面PMD^平面PBD.

查看答案和解析>>

同步练习册答案