精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=|x2﹣2ax+b|(x∈R),给出下列命题:
a∈R,使f(x)为偶函数;
②若f(0)=f(2),则f(x)的图象关于x=1对称;
③若a2﹣b≤0,则f(x)在区间[a,+∞)上是增函数;
④若a2﹣b﹣2>0,则函数h(x)=f(x)﹣2有2个零点.
其中正确命题的序号为

【答案】①③
【解析】解:①当a=0时,f(x)=|x2+b|显然是偶函数,故①正确;
②取a=0,b=﹣2,函数f(x)=|x2﹣2ax+b|化为f(x)=|x2﹣2|,满足f(0)=f(2),
但f(x)的图象不关于x=1对称,故②错误;
③若a2﹣b≤0,则f(x)=|(x﹣a)2+b﹣a2|=(x﹣a)2+b﹣a2在区间[a,+∞)上是增函数,故③正确;
④h(x)=|(x﹣a)2+b﹣a2|﹣2有4个零点,故④错误.

∴正确命题为①③.
所以答案是:①③.
【考点精析】根据题目的已知条件,利用命题的真假判断与应用的相关知识可以得到问题的答案,需要掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,正方体中,点上运动,给出下列四个命题:

①三棱锥的体积不变;

平面 ④平面平面

其中正确的命题是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a∈R,函数f(x)=x2e1x﹣a(x﹣1).
(1)当a=1时,求f(x)在( ,2)内的极大值;
(2)设函数g(x)=f(x)+a(x﹣1﹣e1x),当g(x)有两个极值点x1 , x2(x1<x2)时,总有x2g(x1)≤λf′(x1),求实数λ的值.(其中f′(x)是f(x)的导函数.)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|a﹣3x|﹣|2+x|.
(1)若a=2,解不等式f(x)≤3;
(2)若存在实数a,使得不等式f(x)≥1﹣a+2|2+x|成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解某地高一学生的体能状况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形的面积之比为2:4:17:15:9:3,第二小组频数为12.

(1)第二小组的频率是多少?样本容量是多少?

(2)若次数在110以上为达标,试估计全体高一学生的达标率为多少?

(3)通过该统计图,可以估计该地学生跳绳次数的众数是______,中位数是_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设关于某设备的使用年限(年)和所支出的维修费用(万元)有如下统计资料:

/

2

3

4

5

6

/万元

若由资料知 呈线性相关关系,试求:

1)回归直线方程;

2)估计使用年限为10年时,维修费用约是多少?

参考公式:回归直线方程: .其中

(注: )

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=mx2+(1-3m)x-4,m∈R.

(1)当m=1时,求f(x)在区间[-2,2]上的最大值和最小值.

(2)解关于x的不等式f(x)>-1.

(3)当m<0时,若存在x0∈(1,+∞),使得f(x)>0,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个命题中真命题的个数是(
①“x=1”是“x2﹣3x+2=0”的充分不必要条件
②命题“x∈R,sinx≤1”的否定是“x∈R,sinx>1”
③“若am2<bm2 , 则a<b”的逆命题为真命题
④命题p;x∈[1,+∞),lgx≥0,命题q:x∈R,x2+x+1<0,则p∨q为真命题.
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆、抛物线的焦点均在轴上, 的中心和的顶点均为原点,且椭圆经过点, ,抛物线过点.

Ⅰ)求的标准方程;

Ⅱ)请问是否存在直线满足条件:

①过的焦点;②与交不同两点且满足.

若存在,求出直线的方程;若不存在,说明理由.

查看答案和解析>>

同步练习册答案