精英家教网 > 高中数学 > 题目详情
若函数f(x)=x2+2x+a(a∈R,x<0)图象上两点A(x1,f(x1)),B(x2,f(x2))(x1<x2)处的切线相互垂直,则x2-x1的最小值为
 
考点:导数的几何意义,二次函数的性质
专题:函数的性质及应用,导数的概念及应用
分析:根据题意,结合导数的几何意义,得出f′(x1)f′(x2)=-1,代入导数的对应表达式,得出x2-x1的表达式,求出它的最小值即可.
解答: 解:根据导数的几何意义,得:
f′(x1)f′(x2)=-1,
即(2x1+2)(2x2+2)=-1(x1<x2<0),
所以(2x1+2)<0,(2x2+2)>0,
且[-(2x1+2)](2x2+2)=1,
因此x2-x1=
1
2
[-(2x1+2)+(2x2+2)]≥
-(2x1+2)(2x2+2)
=1,
 当且仅当-(2x1+2)=(2x2+2)=1,
x1=-
3
2
x2=-
1
2
时等号成立;
所以x2-x1的最小值为1.
故答案为:1.
点评:本题考查了导数的几何意义的应用问题,也考查了基本不等式的应用问题,是综合性题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知sin(
π
4
+α)=
1
3
,则cos(
π
4
-α)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数y=f(x)的图象是一条不间断的曲线,f(a)≠f(b),其中a<b,设F(x)=f(x)-
f(a)+f(b)
2
,求证:函数F(x)在(a,b)上有零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=x(4-x)(0<x<4)的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,E,F分别为棱AD,AB的中点.

(Ⅰ)求证:EF∥平面CB1D1
(Ⅱ)求异面直线EF与CD1所成角.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=mx2-(4+m2)x,其中m∈R,且m>0,区间D={x|f(x)<0}.
(1)求区间D的长度(区间(a,b)的长度定义为b-a);
(2)记区间D的长度为g(m),试用函数的单调性定义证明g(m)在(0,2)上单调递减,在(2,+∞)上单调递增;
(3)给定常数t∈(0,2),当2-t≤m≤2+t时,求区间D的长度的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若sin2A+sin2C+cos2B<1,则△ABC一定是(  )
A、钝角三角形B、直角三角形
C、锐角三角形D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,D是△ABC的边AB的中点,则向量
CD
=(  )
A、-
BC
+
DA
B、-
BC
-
BD
C、
BC
-
BD
D、
BC
+
DA

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x2-mx+5在区间(2,+∞)上单调递增,且在区间(-∞,-1)上单调递减,则实数m的取值范围是
 

查看答案和解析>>

同步练习册答案