精英家教网 > 高中数学 > 题目详情
设f(x)=ex(ax2+x+1),且曲线y=f(x)在x=1处的切线与x轴平行.
(Ⅰ)求a的值,并讨论f(x)的单调性;
(Ⅱ)证明:对任意x1,x2∈[0,1],有|f(x1)-f(x2)|<2.
考点:利用导数求闭区间上函数的最值,利用导数研究函数的单调性,利用导数研究曲线上某点切线方程
专题:导数的综合应用
分析:(Ⅰ)切线和x轴平行,所以切线的斜率为0,再根据函数在切点处的导数与切线斜率的关系便能求出a.从而求出函数f(x),求f′(x),根据导数符号和函数单调性的关系便能判断函数f(x)的单调性.
(Ⅱ)根据函数f(x)在[0,1]上的单调性求出函数f(x)的值域[1,e],所以对于任意的x1,x2∈[0,1]有|f(x1)-f(x2)|≤e-1<2,即|f(x1)-f(x2)|<2.
解答: 解:(Ⅰ)f′(x)=ex[ax2+(2a+1)x+2];
由已知条件知:f′(1)=3e(a+1)=0,∴a=-1;
∴f(x)=ex(-x2+x+1),f′(x)=ex(-x2-x+2);
∴解-x2-x+2>0得:-2<x<1;解-x2-x+2<0得:<-2,或x>1;
∴函数f(x)在[-2,1]上单调递增,在(-∞,-2)和(1,+∞)上单调递减.
(Ⅱ)由(Ⅰ)知函数f(x)在[0,1]上单调递增;
∴函数f(x)在[0,1]上的值域为:[f(0),f(1)]=[1,e];
∴对任意x1,x2∈[0,1],|f(x1)-f(x2)|≤e-1<2;
∴对任意x1,x2∈[0,1],有|f(x1)-f(x2)|<2.
点评:考查函数在切点处的导数与切线斜率的关系,函数导数符号和函数单调性的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知不等式组
x+y-6≤0
x-y≥0
y≥2
表示平面区域D,若直线kx-y-1=0经过平面区域D,则k的取值范围是(  )
A、[
1
4
3
2
]
B、[
3
4
,2]
C、[
3
4
3
2
]
D、[1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

在中,“
BA
BC
<0”是“厶ABC为钝角三角形”的(  )条件.
A、充分不必要
B、必要不充分
C、充分必要
D、既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
1-x
+ln(1+x),则f(x)的定义域为(  )
A、{x|x>-1}
B、{x|x<1}
C、{x|-1<x<1}
D、∅

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3+bx2+cx(x∈R),已知g(x)=f(x)-f′(x)是奇函数.
(1)求b、c的值;
(2)求g(x)在区间[-3,2]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

有限集合中元素的个数,我们可以一一数出来,而对于元素个数无限的集合,如,对于集合A={1,2,3,…,n,…}与B={2,4,6,…,2n,…},我们无法数出集合中元素的个数,但可以比较这两个集合中元素个数的多少,你能设计一种比较这两个集合中元素个数多少的方法吗?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知n∈N*,数列{dn}满足dn=
3+(-1)n
2
,数列{an}满足an=d1+d2+…+d2n
(1)求数列{an};
(2)若数列bn=2n,将数列{bn}中的第a1项,第a2项,第a3项,…删去后,剩余的项按从小到大的顺序排列构成新数列{cn},求数列{cn}的前2014项和T2014

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(x2+ax+b)•ex,其中e是自然对数的底数.函数f(x)在x=-
1
2
x=
3
2
处取得极值.
(Ⅰ)求实数a,b的值;
(Ⅱ)求函数f(x)在区间[-1,2]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(x2-3x+3)ex,其定义域为[-2,t](t>-2),
(1)当t=2时时,求函数f(x)的极大值;
(2)求证:对于任意的t>-2,总存在x0∈(-2,t),满足
f′(x0)
ex0
=
2
3
(t-1)2
,并确定这样的x0的个数.

查看答案和解析>>

同步练习册答案