精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
1
1-x
+ln(1+x),则f(x)的定义域为(  )
A、{x|x>-1}
B、{x|x<1}
C、{x|-1<x<1}
D、∅
考点:函数的定义域及其求法
专题:计算题
分析:由分母中根式内部的代数式大于0,对数式的真数大于0联立不等式组求解x的取值集合得答案.
解答: 解:由
1-x>0
1+x>0
,得-1<x<1.
∴f(x)的定义域为{x|-1<x<1}.
故选:C.
点评:本题考查了函数的定义域及其求法,考查了不等式组的解法,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=-x2+2x的单调递减区间为(  )
A、(-1,2)
B、(1,2)
C、(-∞,1)
D、(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn且满足S24>0,S25<0,记bn=|an|,则bn最小时,n的值为(  )
A、11B、12C、13D、14

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={1,2,3,m},B={4,6,7,n4,3n+n2},其中m,n∈N,映射f:A→B满足f:x→3x+1,则m,n的值分别为(  )
A、m=2,n=5
B、m=5,n=2
C、m=1,n=3
D、m=3,n=1

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=ex-ex(e是自然对数的底数2.71828…)在[0,2]上最大值为(  )
A、0B、e-2
C、1D、e(e-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(ax2+x)•ex,其中e是自然数的底数,a∈R,
(1)当a>0时,解不等式f(x)>(a-1)ex
(2)若当x∈[-1,1]时,不等式f(x)+(2ax+1)•ex≥0恒成立,求a的取值范围;
(3)当a=0时,试判断:是否存在整数k,使得方程f(x)=(x+1)•ex+x-2在[k,k+1]上有解?若存在,请写出所有可能的k的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=ex(ax2+x+1),且曲线y=f(x)在x=1处的切线与x轴平行.
(Ⅰ)求a的值,并讨论f(x)的单调性;
(Ⅱ)证明:对任意x1,x2∈[0,1],有|f(x1)-f(x2)|<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)的二次项系数为a,抛物线的顶点是(1,2).若方程f(x)+2x=0有两个相等的实根,
(1)求函数f(x)的解析式;
(2)解不等式f(x)≤
9
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a
3
x3+
b
2
x2-a2x(a>0)
(1)若函数f(x)的图象在x=2处的切线方程为y=7x-20,求a、b的值;
(2)设x1,x2是函数f(x)的两个极值点,且|x1|+|x2|=2,求证:|b|≤
4
3
9

查看答案和解析>>

同步练习册答案