【题目】如图,已知矩形
,过
作
平面
,再过
作
于点
,过
作
于点
.
(Ⅰ)求证:
.
(Ⅱ)若平面
交
于点
,求证:
.
![]()
【答案】(1)见解析(2)见解析
【解析】试题分析:(1)本题需经过多次线面垂直与线线垂直的转化:由
平面
,得
,再得
平面
,即得
,可得
平面
,即得
,因此
平面
,即得结论(2)本题仍需经过多次线面垂直与线线垂直的转化:由
平面
,得
,再得
平面
,即得
,可得
平面
,即得结论
试题解析:(Ⅰ)∵在矩形
中,
∴
,
∵
平面
,
∴
,
∵
点,
、
平面
,
∴
平面
,
∴
,
又∵
,
点,
、
平面
,
∴
平面
,
∴
,
又∵
,
点,
、
平面
,
∴
平面
,
∴
.
(Ⅱ)∵在矩形
中,
∴
,
∵
平面
,
∴
,
∵
点,
、
平面
,
∴
平面
,
∴
,
又∵
平面
,
∴
,
∵
点,
、
平面
,
∴
平面
,
∴
.
点睛:垂直、平行关系证明中应用转化与化归思想的常见类型.
(1)证明线面、面面平行,需转化为证明线线平行.
(2)证明线面垂直,需转化为证明线线垂直.
(3)证明线线垂直,需转化为证明线面垂直.
科目:高中数学 来源: 题型:
【题目】已知⊙
:
与⊙
:
,以
,
分别为左右焦点的椭圆
:
经过两圆的交点。
(Ⅰ)求椭圆
的方程;
![]()
(Ⅱ)
、
是椭圆
上的两点,若直线
与
的斜率之积为
,试问
的面积是否为定值?若是,求出这个定值;若不是,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知幂函数f(x)=(﹣2m2+m+2)xm+1为偶函数.
(1)求f(x)的解析式;
(2)若函数y=f(x)﹣2(a﹣1)x+1在区间(2,3)上为单调函数,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2﹣2x﹣1.
(1)求f(x)的函数解析式;
(2)作出函数f(x)的简图,写出函数f(x)的单调减区间及最值.
(3)若关于x的方程f(x)=m有两个解,试说出实数m的取值范围.(只要写出结果,不用给出证明过程)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入
万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从
开始计数的. [附:回归直线的斜率和截距的最小二乘估计公式分别为.]
(1)根据频率分布直方图计算图中各小长方形的宽度;
(2)试估计该公司投入
万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);
(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:
广告投入 | 1 | 2 | 3 | 4 | 5 |
销售收益 | 2 | 3 | 2 | 7 |
由表中的数据显示,
与
之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出
关于
的回归直线方程.
![]()
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知向量
,向量
,函数f(x)=
.
(1)求函数f(x)的单调递增区间;
(2)将函数y=f(x)的图象上所有点向右平行移动
个单位长度,得函数y=g(x)的图象,求函数y=g(x)在区间[0,π]上的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市为了引导居民合理用水,居民生活用水实行二级阶梯式水价计量办法,具体如下:第一阶梯,每户居民月用水量不超过12吨,价格为4元/吨;第二阶梯,每户居民月用水量超过12吨,超过部分的价格为8元/吨.为了了解全市居民月用水量的分布情况,通过抽样获得了100户居民的月用水量(单位:吨),将数据按照
,
,…,
分成8组,制成了如图1所示的频率分布直方图.
![]()
(图1) (图2)
(Ⅰ)求频率分布直方图中字母
的值,并求该组的频率;
(Ⅱ)通过频率分布直方图,估计该市居民每月的用水量的中位数
的值(保留两位小数);
(Ⅲ)如图2是该市居民张某2016年1~6月份的月用水费
(元)与月份
的散点图,其拟合的线性回归方程是
. 若张某2016年1~7月份水费总支出为312元,试估计张某7月份的用水吨数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com