精英家教网 > 高中数学 > 题目详情

【题目】为数列的前n项和,且,当时,.

(I)证明:数列为等比数列;

(Ⅱ)记,求.

【答案】(I)见解析(Ⅱ)

【解析】

I)当n≥2时,(n﹣1)an=(n+1)Sn﹣1+nn﹣1),n∈N*.可得(n﹣1)(SnSn﹣1)=(n+1)Sn﹣1+nn﹣1),化为:1=2(1),1=2.即可证明.

II)由(I)可得:1=2n,可得:Snn2nn.设数列{n2n}的前n项和为An.利用错位相减法即可得出An,再写出即可.

I)当时,

所以

,则

所以,又

故数列是首项为2,公比为2的等比数列.

(II)由(I)可得:1=2n,可得:Snn2nn

设数列{n2n}的前n项和为An

An=2+222+323+……+n2n

2An=22+223+……+(n﹣1)2n+n2n+1

∴﹣An=2+22+……+2nn2n+1n2n+1

可得:An=(n﹣1)2n+1+2.

TnS1+S2+…+Sn=(n﹣1)2n+1+2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】[2019·清远期末]一只红铃虫的产卵数和温度有关,现收集了4组观测数据列于下表中,根据数据作出散点图如下:

温度

20

25

30

35

产卵数/个

5

20

100

325

(1)根据散点图判断哪一个更适宜作为产卵数关于温度的回归方程类型?(给出判断即可,不必说明理由)

(2)根据(1)的判断结果及表中数据,建立关于的回归方程(数字保留2位小数);

(3)要使得产卵数不超过50,则温度控制在多少以下?(最后结果保留到整数)

参考数据:

5

20

100

325

1.61

3

4.61

5.78

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥的底面是边长为的菱形,,点是棱的中点,,点在平面的射影为为棱上一点,

(Ⅰ)求证:平面平面

(Ⅱ)若为棱的中点,,求直线与平面所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2axbg(x)=ex(cxd),若曲线yf(x)和曲线yg(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.

(1)求abcd的值;

(2)若x≥-2时,恒有f(x)≤kg(x),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若是函数的极值点,求曲线在点处的切线方程;

2)求函数的单调区间;

3)已知,当,试比较的大小,并给予证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正四棱椎P-ABCD中,底面ABCD的边长为2,侧棱长为.

(I)若点EPD上的点,且PB∥平面EAC.试确定E点的位置;

(Ⅱ)在(I)的条件下,点F为线段PA上的一点且,若平面AEC和平面BDF所成的锐二面角的余弦值为,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,侧面底面ABCDEQ分别是BCPC的中点.

I)求直线BQ与平面PAB所成角的正弦值;

(Ⅱ)求二面角E-DQ-P的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间,需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:

以最高气温位于各区间的频率代替最高气温位于该区间的概率.

(1)求六月份这种酸奶一天的需求量(单位:瓶)的分布列;

(2)设六月份一天销售这种酸奶的利润为(单位:元),当六月份这种酸奶一天的进货量(单位:瓶)为多少时?的数学期望达到最大值?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2011年,国际数学协会正式宣布,将每年的3月14日设为“国际数学节”,其来源是中国古代数学家祖冲之的圆周率,为庆祝该节日,某校举办的“数学嘉年华”活动中,设计了如下的有奖闯关游戏:参赛选手按第一关、第二关、第三关的顺序依次闯关,若闯关成功,则分别获得5个、10个、20个学豆的奖励.游戏还规定:当选手闯过一关后,可以选择带走相应的学豆,结束游戏;也可以选择继续闯下一关,若有任何一关没有闯关成功,则全部学豆归零,游戏结束.设选手甲能闯过第一关、第二关、第三关的概率分别为,选手选择继续闯关的概率均为,且各关之间闯关成功与否互不影响.

(1)求选手甲第一关闯关成功且所得学豆为零的概率;

(2)设该选手所得学豆总数为,求的分布列及数学期望.

查看答案和解析>>

同步练习册答案