【题目】设为数列的前n项和,且,当时,.
(I)证明:数列为等比数列;
(Ⅱ)记,求.
【答案】(I)见解析(Ⅱ)
【解析】
(I)当n≥2时,(n﹣1)an=(n+1)Sn﹣1+n(n﹣1),n∈N*.可得(n﹣1)(Sn﹣Sn﹣1)=(n+1)Sn﹣1+n(n﹣1),化为:1=2(1),1=2.即可证明.
(II)由(I)可得:1=2n,可得:Sn=n2n﹣n.设数列{n2n}的前n项和为An.利用错位相减法即可得出An,再写出即可.
(I)当时,,
所以,
即,则,
所以,又,
故数列是首项为2,公比为2的等比数列.
(II)由(I)可得:1=2n,可得:Sn=n2n﹣n.
设数列{n2n}的前n项和为An.
∴An=2+222+323+……+n2n,
2An=22+223+……+(n﹣1)2n+n2n+1,
∴﹣An=2+22+……+2n﹣n2n+1n2n+1,
可得:An=(n﹣1)2n+1+2.
∴Tn=S1+S2+…+Sn=(n﹣1)2n+1+2.
科目:高中数学 来源: 题型:
【题目】[2019·清远期末]一只红铃虫的产卵数和温度有关,现收集了4组观测数据列于下表中,根据数据作出散点图如下:
温度 | 20 | 25 | 30 | 35 |
产卵数/个 | 5 | 20 | 100 | 325 |
(1)根据散点图判断与哪一个更适宜作为产卵数关于温度的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立关于的回归方程(数字保留2位小数);
(3)要使得产卵数不超过50,则温度控制在多少以下?(最后结果保留到整数)
参考数据:,,,,,,,,,,
5 | 20 | 100 | 325 | |
1.61 | 3 | 4.61 | 5.78 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知四棱锥的底面是边长为的菱形,,点是棱的中点,,点在平面的射影为,为棱上一点,
(Ⅰ)求证:平面平面;
(Ⅱ)若为棱的中点,,求直线与平面所成角的正弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+ax+b,g(x)=ex(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2.
(1)求a,b,c,d的值;
(2)若x≥-2时,恒有f(x)≤kg(x),求k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,正四棱椎P-ABCD中,底面ABCD的边长为2,侧棱长为.
(I)若点E为PD上的点,且PB∥平面EAC.试确定E点的位置;
(Ⅱ)在(I)的条件下,点F为线段PA上的一点且,若平面AEC和平面BDF所成的锐二面角的余弦值为,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,侧面底面ABCD,,,E,Q分别是BC和PC的中点.
(I)求直线BQ与平面PAB所成角的正弦值;
(Ⅱ)求二面角E-DQ-P的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间,需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
以最高气温位于各区间的频率代替最高气温位于该区间的概率.
(1)求六月份这种酸奶一天的需求量(单位:瓶)的分布列;
(2)设六月份一天销售这种酸奶的利润为(单位:元),当六月份这种酸奶一天的进货量(单位:瓶)为多少时?的数学期望达到最大值?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2011年,国际数学协会正式宣布,将每年的3月14日设为“国际数学节”,其来源是中国古代数学家祖冲之的圆周率,为庆祝该节日,某校举办的“数学嘉年华”活动中,设计了如下的有奖闯关游戏:参赛选手按第一关、第二关、第三关的顺序依次闯关,若闯关成功,则分别获得5个、10个、20个学豆的奖励.游戏还规定:当选手闯过一关后,可以选择带走相应的学豆,结束游戏;也可以选择继续闯下一关,若有任何一关没有闯关成功,则全部学豆归零,游戏结束.设选手甲能闯过第一关、第二关、第三关的概率分别为,选手选择继续闯关的概率均为,且各关之间闯关成功与否互不影响.
(1)求选手甲第一关闯关成功且所得学豆为零的概率;
(2)设该选手所得学豆总数为,求的分布列及数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com