精英家教网 > 高中数学 > 题目详情

【题目】已知二次函数满足),且.

(1)求的解析式;

(2)若关于的方程在区间上有唯一实数根,求实数的取值范围(注:相等的实数根算一个).

(3)函数,试问是否存在实数,使得对任意 都有成立,若存在,求出实数的取值范围,若不存在,说明理由.

【答案】(1) ;(2) ;(3)答案见解析.

【解析】试题分析:(1)设),代入条件化简并根据恒等式成立条件得 ,(2)研究二次方程根的情况,往往结合二次函数图像,即转化为研究直线与二次函数交点个数,作出图像,根据图像得实数的取值范围(3)先将不等式恒成立问题转化为对应函数最值: ,再根据二次函数对称轴与定义区间位置关系,分类讨论函数最值,解对应不等式,可得实数的取值范围

试题解析:(1)设

代入对于恒成立,故

又由,解得

所以

(2)由方程,令

即要求函数上有唯一的零点,

,则,代入原方程得,不合题意;

②若,则,代入原方程得,满足题意,故成立;

③若,则,代入原方程得,满足题意,故成立.

④若时,由.

综上,实数的取值范围是.

解法2:由方程,即直线与函数 的图象有且只有一个交点(参照给分)

(3)由题意知

假设存在实数满足条件,对任意 都有成立,即,故有

①当时, 上为增函数 ,所以

②当时,

,即

解得,所以.

③当时,

解得,所以

③当时,

,所以

综上所述,

所以当时,使得对任意 都有成立

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某科考试中,从甲、乙两个班级各抽取10名同学的成绩进行统计分析,两班成绩的茎叶图如图所示,成绩不小于90分为及格.

(Ⅰ)设甲、乙两个班所抽取的10名同学成绩方差分别为,比较的大小(直接写出结果,不写过程);

(Ⅱ)从甲班10人任取2人,设这2人中及格的人数为X,求X的分布列和期望;

(Ⅲ)从两班这20名同学中各抽取一人,在已知有人及格的条件下,求抽到乙班同学不及格的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是偶函数.

(1)求的值;

(2)若函数的图象与直线没有交点,求b的取值范围;

(3)设,若函数的图象有且只有一个公共点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在底面为直角梯形的四棱锥PABCD中,ADBC,∠ABC=90°,PA⊥平面ABCDACBDEAD=2,AB=2BC=6,求证:平面PBD⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+1,x∈R.

(1)分别计算f(1)-f(-1),f(2)-f(-2),f(3)-f(-3)的值;

(2)由(1)你发现了什么结论?并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知幂函数f(x)=x (m∈N*)的图象关于y轴对称,且在(0,+∞)上是减函数,求满足(a+1) <(3-2a) 的a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)求函数上的最小值;

(Ⅱ)设函数,若函数的零点有且只有一个,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (t+1)lnx,,其中t∈R.

(1)若t=1,求证:当x>1时,f(x)>0成立;

(2)若t> ,判断函数g(x)=x[f(x)+t+1]的零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有甲、乙两种商品,经营销售这两种商品所得的利润依次为M万元和N万元,它们与投入资金万元的关系可由经验公式给出:M=N= (≥1).今有8万元资金投入经营甲、乙两种商品,且乙商品至少要求投资1万元,

设投入乙种商品的资金为万元,总利润

2)为获得最大利润,对甲、乙两种商品的资金投入分别是多少?共能获得多大利润?

查看答案和解析>>

同步练习册答案