精英家教网 > 高中数学 > 题目详情
已知P点是双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
上一点,F1、F2是它的左、右焦点,若|PF2|=3|PF1|,则双曲线的离心率的取值范围是(  )
A.(1,2)B.(2,+∞)C.(1,2]D.[2,+∞)
解根据双曲线定义可知|PF2|-|PF1|=2a,即3|PF1|-|PF1|=2a.
∴a=|PF1|.|PF2|=3a
在△PF1F2中,|F1F2|<|PF1|+|PF2|,
2c<4|PF1||,c<2|PF1|=2a,
c
a
<2,
当p为双曲线顶点时,
c
a
=2
又∵双曲线e>1,
∴1<e≤2
故选C
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出以下三个命题:
(A)已知P(m,4)是椭圆
x2
a2
+
y2
b2
=1
(a>b>0)上的一点,F1、F2是左、右两个焦点,若△PF1F2的内切圆的半径为
3
2
,则此椭圆的离心率e=
4
5

(B)过椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)上的任意一动点M,引圆O:x2+y2=b2的两条切线MA、MB,切点分别为A、B,若∠BMA=
π
2
,则椭圆的离心率e的取值范围为[
3
2
,1)

(C)已知F1(-2,0)、F2(2,0),P是直线x=-1上一动点,则以F1、F2为焦点且过点P的双曲线的离心率e的取值范围是[2,+∞).
其中真命题的代号是
 
(写出所有真命题的代号).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F是双曲线x2-
y2
8
=1
的右焦点,A(-2,
3
)
,P是双曲线右支上的动点,则|PA|-|PF|的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点F是双曲线x2-
y2
2
=1
的一个焦点,过点F作直线l交双曲线于两点P、Q,若|PQ|=4,则这样的直线l有且仅有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动点P与双曲线x2-
y2
3
=1
.的两焦点F1,F2的距离之和为大于4的定值,且|
PF1
|•|
PF2
|的最大值为9.
(1)求动点P的轨迹E的方程;
(2)若A,B是曲线E上相异两点,点M(0,2)满足
AM
MB
,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•扬州三模)已知点P是双曲线x2-y2=2上的点,该点关于实轴的对称点为Q,则
OP
OQ
=
2
2

查看答案和解析>>

同步练习册答案