精英家教网 > 高中数学 > 题目详情
将边长为的正方形ABCD沿对角线AC折起,使得,则三棱锥D—ABC的体积为(     )
A.B.C.D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)如图,在长方体中,点在棱的延长线上,且
(Ⅰ)求证:∥平面
(Ⅱ)求证:平面平面
(Ⅲ)求四面体的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,四边形ABCD是边长为1的正方形, ,   ,且MD=NB=1,E为BC   的中点 (1)求异面直线NE与AM所成角的余弦值
(2)在线段AN上找点S,使得ES平面AMN,并求线段AS的长;

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设四棱锥的底面不是平行四边形,用平面去截此四棱锥,使得截面四边形是平行四边形,则这样的平面        个.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在空间中,设为两条不同的直线,为两个不同的平面,给定下列条件:
;②;③;④.其中可以判定的有                 (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在直角梯形ABCD中,,AB=2,E为AB的中点,将沿DE翻折至,使二面角A为直二面角。
(I)若F、G分别为的中点,求证:平面
(II)求二面角度数的余弦值

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个空间几何体的三视图如下:其中主视图和侧视图都是上底为,下底为,高为的等腰梯形,俯视图是两个半径分别为的同心圆,那么这个几何体的侧面积为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正四面体ABCD的棱长为1,棱AB//平面,则正四面体上的所有点在平面内的射影构成图形面积的取值范围是
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题14分)
如图所示,在长方体中,AB=AD=1,AA1=2,M是棱CC1的中点
(1)求异面直线A1M和C1D1所成的角的正切值;
(2)证明:直线BM⊥平面A1B1M1

查看答案和解析>>

同步练习册答案