【题目】已知椭圆
:
的离心率为
,焦距为
.
(1)求
的方程;
(2)若斜率为
的直线
与椭圆
交于
,
两点(点
,
均在第一象限),
为坐标原点.
①证明:直线
的斜率依次成等比数列.
②若
与
关于
轴对称,证明:
.
科目:高中数学 来源: 题型:
【题目】某快餐连锁店招聘外卖骑手,该快餐连锁店提供了两种日工资方案:方案(a)规定每日底薪50元,快递业务每完成一单提成3元;方案(b)规定每日底薪100元,快递业务的前44单没有提成,从第45单开始,每完成一单提成5元,该快餐连锁店记录了每天骑手的人均业务量,现随机抽取100天的数据,将样本数据分为[ 25,35),[35,45),[45,55),[55,65),[65,75),[75,85),[85,95]七组,整理得到如图所示的频率分布直方图.
![]()
(1)随机选取一天,估计这一天该连锁店的骑手的人均日快递业务量不少于65单的概率;
(2)从以往统计数据看,新聘骑手选择日工资方案(a)的概率为
,选择方案(b)的概率为
.若甲、乙、丙三名骑手分别到该快餐连锁店应聘,三人选择日工资方案相互独立,求至少有两名骑手选择方案(a)的概率;
(3)若仅从人均日收入的角度考虑,请你利用所学的统计学知识为新聘骑手做出日工资方案的选择,并说明理由.(同组中的每个数据用该组区间的中点值代替)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
,
,上顶点为A,过
的直线
与y轴交于点M,满足
(O为坐标原点),且直线l与直线
之间的距离为
.
(1)求椭圆C的方程;
(2)在直线
上是否存在点P,满足
?存在,指出有几个这样的点(不必求出点的坐标);若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知二面角P﹣AB﹣C的大小为120°,且∠PAB=∠ABC=90°,AB=AP,AB+BC=6.若点P,A,B,C都在同一个球面上,则该球的表面积的最小值为( )
A.45πB.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
与椭圆
交于不同的两点
,
.
(1)若线段
的中点为
,求直线
的方程;
(2)若
的斜率为
,且
过椭圆
的左焦点
,
的垂直平分线与
轴交于点
,求证:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
(
为自然对数的底数,
).
(1)当
时,求函数
的图象在
处的切线方程;
(2)若函数
在区间
上具有单调性,求
的取值范围;
(3)若函数![]()
有且仅有
个不同的零点
,且
,
,求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
,直线
过焦点
且与抛物线交于
、
两点,当直线
的倾斜角为30°时,
.
(1)求抛物线方程.
(2)在平面直角坐标系
中,是否存在定点
,当直线
绕
旋转时始终都满足
平分
.若存在,求出
的坐标,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一周岁生日开始,每年到银行储蓄
元一年定期,若年利率为
保持不变,且每年到期时存款(含利息)自动转为新的一年定期,当孩子18岁生日时不再存入,将所有存款(含利息)全部取回,则取回的钱的总数为
![]()
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年反映社会现实的电影《我不是药神》引起了很大的轰动,治疗特种病的创新药研发成了当务之急.为此,某药企加大了研发投入,市场上治疗一类慢性病的特效药品
的研发费用
(百万元)和销量
(万盒)的统计数据如下:
研发费用 | 2 | 3 | 6 | 10 | 13 | 15 | 18 | 21 |
销量 | 1 | 1 | 2 | 2.5 | 3.5 | 3.5 | 4.5 | 6 |
(1)求
与
的相关系数
精确到0.01,并判断
与
的关系是否可用线性回归方程模型拟合?(规定:
时,可用线性回归方程模型拟合);
(2)该药企准备生产药品
的三类不同的剂型
,
,
,并对其进行两次检测,当第一次检测合格后,才能进行第二次检测.第一次检测时,三类剂型
,
,
合格的概率分别为
,
,
,第二次检测时,三类剂型
,
,
合格的概率分别为
,
,
.两次检测过程相互独立,设经过两次检测后
,
,
三类剂型合格的种类数为
,求
的数学期望.
附:(1)相关系数![]()
(2)
,
,
,
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com