精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)若函数上是减函数,求实数的取值范围;

2)令,是否存在实数,使得当时,函数的最小值是3?若存在,求出实数的值;若不存在,说明理由;

3)当时,证明.

【答案】12)存在,3)见解析

【解析】

1)先求导可得,则可将问题转化为上恒成立,即上恒成立,设,求得,即可求解;

2)先对求导,再分别讨论,,时的情况,由最小值为3,进而求解;

3)令,结合(2)中知的最小值为3.再令并求导,再由导函数在大于等于0可判断出函数上单调递增,从而可求得最大值也为3,即有成,,即成立,即可得证.

1)解:上恒成立,

上恒成立,

所以上恒成立,

,则上单调递减,所以

所以

2)解:存在,

假设存在实数,使有最小值3,

①当时,,则上单调递减,

所以,解得(舍去);

②当时,当,则;当,则,

所以上单调递减,在上单调递增,

,解得,满足条件;

③当时,,则上单调递减,

所以,解得(舍去),

综上,存在实数,使得当有最小值3.

3)证明:令,由(2)知,,

,则,

时,,则上单调递增,

,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求函数的极值;

2)当时,若函数有两个极值点,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)求的单调区间;

(2)当时,求证:对于恒成立;

(3)若存在,使得当时,恒有成立,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】支付宝和微信支付已经成为现如今最流行的电子支付方式,某市通过随机询问100名居民(男女居民各50名)喜欢支付宝支付还是微信支付,得到如下的列联表:

支付宝支付

微信支付

40

10

25

25

附表及公式:.

P

0.050

0.010

0.001

k

3.841

6.635

10.828

则下面结论正确的是(

A.以上的把握认为支付方式与性别有关

B.在犯错误的概率超过的前提下,认为支付方式与性别有关

C.在犯错误的概率不超过的前提下,认为支付方式与性别有关

D.以上的把握认为支付方式与性别无关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,椭圆的左、右焦点分别为为椭圆短轴端点,若为直角三角形且周长为.

1)求椭圆的方程;

2)若直线与椭圆交于两点,直线,斜率的乘积为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在中,两直角边的长分别为,以的中点为原点,所在直线为轴,以的垂直平分线为轴建立平面直角坐标系,椭圆为焦点,且经过点.

1)求椭圆的方程;

2)直线相交于两点,在轴上是否存在点,使得为等边三角形,若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若曲线在点处的切线与直线垂直,求函数的单调区间;

(2)若对于任意都有成立,试求的取值范围;

(3)记.时,函数在区间上有两个零点,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,定点 ,为平面内一动点,以线段为直径的圆内切于圆,设动点的轨迹为曲线

1)求曲线的方程

2)过点的直线交于两点,已知点,直线分别与直线交于两点,线段的中点是否在定直线上,若存在,求出该直线方程;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(多选题)下列说法中,正确的命题是(

A.已知随机变量服从正态分布,则

B.以模型去拟合一组数据时,为了求出回归方程,设,将其变换后得到线性方程,则的值分别是0.3

C.已知两个变量具有线性相关关系,其回归直线方程为,若,则

D.若样本数据的方差为2,则数据的方差为16

查看答案和解析>>

同步练习册答案