精英家教网 > 高中数学 > 题目详情

【题目】已知.

(1)求的单调区间;

(2)当时,求证:对于恒成立;

(3)若存在,使得当时,恒有成立,试求的取值范围.

【答案】(1)单调增区间为,单调减区间为;(2)详见解析;(3).

【解析】

试题(1)对函数求导后,利用导数和单调性的关系,可求得函数的单调区间.(2)构造函数,利用导数求得函数上递减,且,则,故原不等式成立.(3)同(2)构造函数,对分成三类,讨论函数的单调性、极值和最值,由此求得的取值范围.

试题解析:

(1)

时,.

解得

时,解得

所以单调增区间为

单调减区间为

(2)设

时,由题意,当时,

恒成立.

∴当时,恒成立,单调递减.

∴当时,恒成立,即

∴对于恒成立.

(3)因为

由(2)知,当时,恒成立,

即对于

不存在满足条件的

时,对于

此时

恒成立,不存在满足条件的

时,令

可知符号相同,

时,

单调递减.

∴当时,

恒成立.

综上,的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】数学中有许多形状优美、寓意美好的曲线,曲线就是其中之一(如图),给出下列三个结论:

①曲线恰好经过4个整点(即横、纵坐标均为整数的点);

②曲线上任意一点到原点的距离都不超过.

③曲线所围成的“花形”区域的面积小于4.

其中,所有正确结论的序号是_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市春节期间7家超市的广告费支出(万元)和销售额(万元)数据如下:

(1)若用线性回归模型拟合的关系,求关于的线性回归方程;

(2)用二次函数回归模型拟合的关系,可得回归方程: ,计算二次函数回归模型和线性回归模型的分别约为0.75和0.97,请用说明选择个回归模型更合适,并用此模型预测超市广告费支出为8万元时的销售额.

参考数据: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在四棱锥P-ABCD中,底面ABCD是矩形,且平面ABCDEF分别是线段ABBC的中点.

1)证明:

2)点G在线段PA上,且平面PFD,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在棱锥P-ABCD中,PA平面ABCD,底面ABCD为直角梯形,PA=AD=DC=2,AB=4且ABCDBAD=90°.

(1)求证:BCPC

(2)PB与平面PAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率;先由计算器给出0到9之间取整数值的随机数,指定0、1、2表示没有击中目标,3、4、5、6、7、8、9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数 :

7527 0293 7140 9857 0347 4373 8636 6947 1417 4698

0371 6233 2616 8045 6011 3661 9597 7424 7610 4281

根据以上数据估计该射击运动员射击4次至少击中3次的概率为( )

A. 0.55B. 0.6C. 0.65D. 0.7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班共有学生45人,其中女生18人,现用分层抽样的方法,从男、女学生中各抽取若干学生进行演讲比赛,有关数据见下表(单位:人)

性别

学生人数

抽取人数

女生

18

男生

3

1)求

2)若从抽取的学生中再选2人做专题演讲,求这2人都是男生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线C的参数方程为为参数.在以原点为极点,为参数).在以原点为极点,轴的正半轴为极轴的极坐标系中,直线的极坐标方程为

(Ⅰ)求曲线C的普通方程和直线的直角坐标方程;

(Ⅱ)设,直线与曲线C交于MN两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(e为自然对数的底数),

(I)记.

(i)讨论函数单调性;

(ii)证明当时,恒成立

(II)令,设函数G(x)有两个零点,求参数a的取值范围.

查看答案和解析>>

同步练习册答案