精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,曲线C的参数方程为为参数.在以原点为极点,为参数).在以原点为极点,轴的正半轴为极轴的极坐标系中,直线的极坐标方程为

(Ⅰ)求曲线C的普通方程和直线的直角坐标方程;

(Ⅱ)设,直线与曲线C交于MN两点,求的值.

【答案】(Ⅰ);(Ⅱ)7.

【解析】

(Ⅰ)直接把曲线C的参数方程平方相加,可以消除参数,得到普通方程,结合极坐标与直角坐标的互化公式可得直线的直角坐标方程;(Ⅱ)先写出直线的标准式参数方程,代入曲线方程,化为关于的一元二次方程,再由根与系数的关系及的几何意义,即可求出。

(I) 曲线C的普通方程:

直线l的直角坐标方程:

II)设直线l的参数方程为t为参数)

代入

,故

对应的对数分别为

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数

(1)若函数有两个零点,试求的取值范围;

(2)证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近期,某公交公司与银行开展云闪付乘车支付活动,吸引了众多乘客使用这种支付方式.某线路公交车准备用20天时间开展推广活动,他们组织有关工作人员,对活动的前七天使用云闪付支付的人次数据做了初步处理,设第x天使用云闪付支付的人次为y,得到如图所示的散点图.

由统计图表可知,可用函数yabx拟合yx的关系

1)求y关于x的回归方程;

2)预测推广期内第几天起使用云闪付支付的人次将超过10000人次.

附:①参考数据

xi2

xiyi

xivi

4

360

2.30

140

14710

71.40

表中vilgyilgyi

②参考公式:对于一组数据(u1v1),(u2v2)…,(unvn),其回归直线vα+βu的斜率和截距的最小二乘估计分别为βα

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形中,,四边形是菱形,.

(Ⅰ)求证:

(Ⅱ)求二面角的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是枇把生产大国,在对枇杷的长期栽培和选育中,形成了众多的品种.成熟的枇杷味道甜美,营养颇丰,而且中医认为枇杷有润肺、止咳、止渴的功效.因此,枇杷受到大家的喜爱.某果农调查了枇杷上市时间与卖出数量的关系,统计如表所示:

结合散点图可知,线性相关.

(Ⅰ)求关于的线性回归方程(其中用假分数表示);

(Ⅱ)计算相关系数,并说明(I)中线性回归模型的拟合效果.

参考数据:

参考公式:回归直线方程中的斜率和截距的最小二乘法估计公式分别为:

;相关系数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为定义在上的奇函数,且当时,

(Ⅰ)求函数的解析式;

(Ⅱ)求函数在区间 上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知函数是减函数,则实数( )

A.2B.1C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,摩天轮的半径为50m,圆心O距地面的高度为65m.已知摩天轮按逆时针方向匀速转动,每30min转动一圈.游客在摩天轮的舱位转到距离地面最近的位置进舱.

1)游客进入摩天轮的舱位,开始转动tmin后,他距离地面的高度为h,求h关于t的函数解析式;

2)已知在距离地面超过40m的高度,游客可以观看到游乐场全景,那么在摩天轮转动一圈的过程中,游客可以观看到游乐场全景的时间是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(1)求的单调区间;

(2)设为函数的两个零点,求证:.

查看答案和解析>>

同步练习册答案