精英家教网 > 高中数学 > 题目详情

【题目】已知在四棱锥P-ABCD中,底面ABCD是矩形,且平面ABCDEF分别是线段ABBC的中点.

1)证明:

2)点G在线段PA上,且平面PFD,求

【答案】1)证明见解析;(23

【解析】

1)连接,根据勾股定理可得,利用线面垂直的性质可得,再利用线面垂直的判定定理可得平面,从而证出.

2)取的中点,连接,过点于点,过点于点平面,利用面面平行判定定理可得平面平面 进而可得平面PFD 由上可知,从而可证出.

1)连接

底面ABCD是矩形,且F 是线段BC的中点,

平面ABCD平面ABCD

,又平面

平面

2)取的中点,连接,则,过点于点,则平面.

的中点,

再过点于点,则平面

所以平面平面 进而可得平面PFD

所以,所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】以下结论正确的个数是(

①若数列中的最大项是第项,则.

②在中,若,则为等腰直角三角形.

③设分别为等差数列的前项和,若,则.

的内角的对边分别为,若成等比数列,且,则.

⑤在中,分别是所对边,,则的取值范围为.

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABCA1B1C1中,DE分别为BCAC的中点,AB=BC

求证:(1A1B1∥平面DEC1

2BEC1E

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市公租房的房源位于四个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,在该市的甲、乙、丙三位申请人中:

(1)求恰有1人申请片区房源的概率;

(2)用表示选择片区的人数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂为了评估某种零件生产过程的情况,制定如下规则:若零件的尺寸在,则该零件的质量为优秀,生产过程正常;若零件的尺寸在且不在,则该零件的质量为良好,生产过程正常;若零件的尺寸在且不在,则该零件的质量为合格,生产过程正常;若零件的尺寸不在,则该零件不合格,同时认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,(其中为样本平均数,为样本标准差)下面是检验员从某一天生产的一批零件中随机抽取的20个零件尺寸的茎叶图(单位:cm)经计算得,其中为抽取的第个零件的尺寸,.

1)利用该样本数据判断是否需对当天的生产过程进行检查;

2)利用该样本,从质量良好的零件中任意抽取两个,求抽取的两个零件的尺寸均超过的概率;

3)剔除该样本中不在的数据,求剩下数据的平均数和标准差(精确到0.01)

参考数据:,,,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地棚户区改造建筑平面示意图如图所示,经规划调研确定,棚改规划建筑用地区域近似为圆面,该圆面的内接四边形是原棚户区建筑用地,测量可知边界万米,万米,万米.

(1)请计算原棚户区建筑用地的面积及的长;

(2)因地理条件的限制,边界不能更改,而边界可以调整,为了提高棚户区建筑用地的利用率,请在圆弧上设计一点,使得棚户区改造后的新建筑用地的面积最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)求的单调区间;

(2)当时,求证:对于恒成立;

(3)若存在,使得当时,恒有成立,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业拟用10万元投资甲、乙两种商品.已知各投入万元,甲、乙两种商品分别可获得万元的利润,利润曲线,如图所示.

(1)求函数的解析式;

(2)应怎样分配投资资金,才能使投资获得的利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据教育部高考改革指导意见,广东省从2021年正式实施“”新的高考考试方案.为尽快了解学生的选科需求,及时调整学校人力资源配备.某校从高一学生中抽样调查了100名同学,在模拟分科选择中,一半同学(其中男生38人)选择了物理,另一半(其中男生14人)选择了历史.请完成以下列联表,并判断能否有99.9%的把握说选科与性别有关?

参考公式:,其中为样本容量.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

选物理

选历史

总计

男生

女生

总计

查看答案和解析>>

同步练习册答案