【题目】在经济学中,函数
的边际函数
定义为
.某医疗设备公司生产某医疗器材,已知每月生产
台
的收益函数为
(单位:万元),成本函数
(单位:万元),该公司每月最多生产
台该医疗器材.(利润函数=收益函数-成本函数)
(1)求利润函数
及边际利润函数
;
(2)此公司每月生产多少台该医疗器材时每台的平均利润最大,最大值为多少?(精确到
)
(3)求
为何值时利润函数
取得最大值,并解释边际利润函数
的实际意义.
【答案】(1)![]()
;![]()
![]()
;(2)
台,
万元;(3)
或
;
反映了产量与利润增量的关系,从第二台开始,每多生产一台医疗器材利润增量在减少.
【解析】
(1)根据利润公式得到
,根据边际函数定义得到
;
(2)判断函数的单调性,计算
和
对应的平均利润,从而得到结论;
(3)根据二次函数的对称性求出
的值.
(1)由题意知:
且
,
![]()
,
![]()
.
(2)每台医疗器材的平均利润![]()
,当且仅当
时等号成立.
因为
,当每月生产
台机器时,每台平均约为
万元,每月生产
台时,每台平均约为
万元,故每月生产
台时,每台医疗器材的平均利润最大为
万元.
(3)
,
由
,得
,此时
随
增大而增大,
由
得
,此时
随
增大而减小,
或
时,
取得最大值.
反映了产量与利润增量的关系,从第二台开始,每多生产一台医疗器材利润增量在减少.
科目:高中数学 来源: 题型:
【题目】由中央电视台综合频道
和唯众传媒联合制作的《开讲啦》是中国首档青年电视公开课.每期节目由一位知名人士讲述自己的故事,分享他们对于生活和生命的感悟,给予中国青年现实的讨论和心灵的滋养,讨论青年们的人生问题,同时也在讨论青春中国的社会问题,受到青年观众的喜爱,为了了解观众对节目的喜爱程度,电视台随机调查了
、
两个地区的100名观众,得到如下的
列联表,已知在被调查的100名观众中随机抽取1名,该观众是
地区当中“非常满意”的观众的概率为0.4.
非常满意 | 满意 | 合计 | |
| 35 | 10 |
|
|
|
|
|
合计 |
|
|
|
(1)现从100名观众中用分层抽样的方法抽取20名进行问卷调查,则应抽取“非常满意”的
、
地区的人数各是多少.
(2)完成上述表格,并根据表格判断是否有
的把握认为观众的满意程度与所在地区有关系.
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
附:参考公式:
.
(3)若以抽样调查的频率为概率,从
、
两个地区随机抽取2人,设抽到的观众“非常满意”的人数为
,求
的分布列和期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是
的中点.
![]()
(1)设P是
上的一点,且AP⊥BE,求∠CBP的大小;
(2)当AB=3,AD=2时,求二面角E-AG-C的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)若函数f(x)在(0,+∞)上是减函数,其实数m的取值范围;
(2)若函数f(x)在(0,+∞)上存在两个极值点x1,x2,证明:lnx1+lnx2>2.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.现齐王与田忌各出上等马、中等马、下等马一匹,共进行三场比赛,规定:每一场双方均任意选一匹马参赛,且每匹马仅参赛一次,胜两场或两场以上者获胜.则田忌获胜的概率为( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆
,动圆
与圆
外切,且与直线
相切,该动圆圆心
的轨迹为曲线
.
(1)求曲线
的方程
(2)过点
的直线与抛物线相交于
两点,抛物线在点A的切线与
交于点N,求
面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com