精英家教网 > 高中数学 > 题目详情

在等比数列{}中,,公比,且的等比中项为2.
(1)求数列{}的通项公式;
(2)设 ,求:数列{}的前项和为

(1)(2)

解析试题分析:(1)由a1a5=,a2a8=原式可化为+2a3a5+=25,即a3+a5=5,又由a3a5=4,解出q,a1即可.(2)代入中,得到bn=5-n,即数列,{bn}是以4为首项,-1为公差的等差数列,根据等差数列的前n项和公式求之即可.
试题解析:解:(1)因为a1a5+2a3a5+a2a8=25,所以,+2a3a5+=25
又an>o,…a3+a5=5,          3分
又a3与a5的等比中项为2,所以,a3a5=4
而q(0,1),所以,a3>a5,所以,a3=4,a5=1,,a1=16,所以,
          6分
(2)bn=log2an=5-n,所以,bn+1-bn=-1,
所以,{bn}是以4为首项,-1为公差的等差数列             8分
所以,            10分
考点:1.等比数列的性质和通项公式;2.等差数列前n项和;3..对数的运算性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数f(x)=x2-(a-1)x-b-1,当x∈[b, a]时,函数f(x)的图像关于y轴对称,数列的前n项和为Sn,且Sn=f(n).
(Ⅰ)求数列的通项公式;
(Ⅱ)设,Tn=b1+b2++bn,若Tn>2m,求m的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列中,且点在直线上。
(1)求数列的通项公式;
(2)若函数求函数的最小值;
(3)设表示数列的前项和.试问:是否存在关于的整式,使得对于一切不小于2的自然数恒成立?若存在,写出的解析式,并加以证明;若不存在,试说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列{an}中,a1=1,当时,其前n项和满足.
(Ⅰ)求Sn的表达式;
(Ⅱ)设,数列{bn}的前n项和为,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列中,,数列中,,且点在直线上.
(Ⅰ)求数列的通项公式;
(Ⅱ)求数列的通项公式;
(Ⅲ)若,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列的各项都是正数,且对任意,都有,其中 为数列的前项和。
(1)求证数列是等差数列;
(2)若数列的前项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设等比数列的首项为,公比为为正整数),且满足的等差中项;数列满足).
(Ⅰ)求数列的通项公式;
(Ⅱ)试确定的值,使得数列为等差数列;
(Ⅲ)当为等差数列时,对每个正整数,在之间插入个2,得到一个新数列. 设是数列 的前项和,试求满足的所有正整数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列的前项和为,且.
(I)求数列的通项公式;
(II)设等比数列,若,求数列的前项和
(Ⅲ)设,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知各项为正数的等差数列满足,且).
(Ⅰ)求数列的通项公式;
(Ⅱ)设,求数列的前n项和

查看答案和解析>>

同步练习册答案