【题目】棋盘上标有第
、
、
、
、
站,棋子开始位于第
站,棋手抛掷均匀硬币走跳棋游戏,若掷出正面,棋子向前跳出一站;若掷出反面,棋子向前跳出两站,直到调到第
站或第
站时,游戏结束.设棋子位于第
站的概率为
.
(1)当游戏开始时,若抛掷均匀硬币
次后,求棋手所走步数之和
的分布列与数学期望;
(2)证明:
;
(3)求
、
的值.
【答案】(1)分布列见解析,随机变量
的数学期望为
;(2)证明见解析;
(3)
,
.
【解析】
(1)根据题意得出随机变量
的可能取值有
、
、
、
,利用独立重复试验的概率公式计算出随机变量
在相应取值时的概率,可列出随机变量
的分布列,由此计算出随机变量
的数学期望;
(2)根据题意,棋子要到第
站,由两种情况,由第
站跳
站得到,也可以由第
站跳
站得到,由此得出
,并在该等式两边同时减去
,可得出所证等式成立;
(3)结合(1)、(2)可得
,利用累加法求出数列
的通项公式,从而可求出
和
的值.
(1)由题意可知,随机变量
的可能取值有
、
、
、
.
,
,
,
.
所以,随机变量
的分布列如下表所示:
|
|
|
|
|
|
|
|
|
|
所以,随机变量
的数学期望为
;
(2)根据题意,棋子要到第
站,由两种情况,由第
站跳
站得到,其概率为
,也可以由第
站跳
站得到,其概率为
,所以,
.
等式两边同时减去
得
;
(3)由(2)可得
,
,
.
由(2)可知,数列
是首项为
,公比为
的等比数列,
,
![]()
,
又
,则
,
由于若跳到第
站时,自动停止游戏,故有
.
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P﹣ABC中,PA⊥平面ABC,AB⊥BC,PA=AB,D为PB中点,PC=3PE.
![]()
(1)求证:平面ADE⊥平面PBC;
(2)在AC上是否存在一点M,使得MB∥平面ADE?若存在,请确定点M的位置,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某大学餐饮中心为了了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:
喜欢甜品 | 不喜欢甜品 | 合计 | |
南方学生 | 60 | 20 | 80 |
北方学生 | 10 | 10 | 20 |
合计 | 70 | 30 | 100 |
根据表中数据,问是否有
的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;
已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.
附:
|
|
|
|
|
|
|
|
|
|
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
的前
项和为
,且满足
,
,设
,
.
(Ⅰ)求证:数列
是等比数列;
(Ⅱ)若
,
,求实数
的最小值;
(Ⅲ)当
时,给出一个新数列
,其中
,设这个新数列的前
项和为
,若
可以写成
(
,
且
,
)的形式,则称
为“指数型和”.问
中的项是否存在“指数型和”,若存在,求出所有“指数型和”;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我们知道,地球上的水资源有限,爱护地球、节约用水是我们每个人的义务与责任.某市政府为了对自来水的使用进行科学管理,节约水资源,计划确定一个家庭年用水量的标准.为此,对全市家庭日常用水量的情况进行抽样抽查,获得了
个家庭某年的用水量(单位:立方米),统计结果如下表及图所示.
![]()
分组 | 频数 | 频率 |
| 25 | |
| 0.19 | |
| 50 | |
| 0.23 | |
| 0.18 | |
| 5 |
(1)分别求出
,
的值;
(2)若以各组区间中点值代表该组的取值,试估计全市家庭年均用水量;
(3)从样本中年用水量在
(单位:立方米)的5个家庭中任选3个,作进一步的跟踪研究,求年用水量最多的家庭被选中的概率(5个家庭的年用水量都不相等).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
(其中
为参数)曲线
的普通方程为
,以坐标原点为极点,以
轴正半轴为极轴建立极坐标系.
(1)求曲线
和曲线
的极坐标方程;
(2)射线
:
依次与曲线
和曲线
交于
、
两点,射线
:
依次与曲线
和曲线
交于
、
两点,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱
中,
平面
,
,
,点
在线段
上,且
,
.
![]()
(1)试用空间向量证明直线
与平面
不平行;
(2)设平面
与平面
所成的锐二面角为
,若
,求
的长;
(3)在(2)的条件下,设平面
平面
,求直线
与平面
的所成角.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com