精英家教网 > 高中数学 > 题目详情
10.设函数f(x)=x3-3ax2+3(2-a)x,a∈R.
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)若y=f(x)的图象与x轴相切于原点,当0<x2<x1,f(x1)=f(x2),求证:x1+x2<8.

分析 (1)先求导f′(x)=3x2-6ax+3(2-a),再确定△=36(a2+a-2)=36(a+2)(a-1);从而以△讨论单调区间即可;
(2)令f′(0)=3×02-6a•0+3(2-a)=0可求得a=2;从而化简f(x)=x3-6x2,从而可知f(x)的单调递增区间为(-∞,0),(4,+∞);单调减区间为(0,4);再由f(x1)=f(x2),且0<x2<x1,得到不等式组,从而证出结论.

解答 解:(1)f′(x)=3x2-6ax+3(2-a),
△=36(a2+a-2)=36(a+2)(a-1);
①当a<-2或a>1时,
由f′(x)=3x2-6ax+3(2-a)=0解得,
x=a±$\sqrt{{a}^{2}+a-2}$;
f(x)的单调递增区间为(-∞,a-$\sqrt{{a}^{2}+a-2}$),(a+$\sqrt{{a}^{2}+a-2}$,+∞);
②当-2≤a≤1时,f(x)的单调递增区间为(-∞,+∞);
(2)证明:令f′(0)=3×02-6a•0+3(2-a)=0得a=2;
故f(x)=x3-6x2
由(1)知,f(x)的单调递增区间为(-∞,0),(4,+∞);
单调减区间为(0,4);
∵f(x1)=f(x2),且0<x2<x1
∴0<x2<4,x1>4,
∴8-x2>4,
而f(x2)-f(8-x2
=${{x}_{2}}^{3}$-6${{x}_{2}}^{2}$-[${(8{-x}_{2})}^{3}$-6${(8{-x}_{2})}^{2}$]
=2(x2-4)${{(x}_{2}-4)}^{2}$<0,
∴f(x1)=f(x2)<f(8-x2),
∵函数f(x)在(4,+∞)递增,
∴x1<8-x2
∴x1+x2<8.

点评 本题考查了导数的综合应用,二次方程的根及单调性的判断与应用,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.在正方体ABCD-A1B1C1D1中,P为底面ABCD上一动点,如果P到点A1的距离等于P到直线CC1的距离,那么点P的轨迹所在的曲线是(  )
A.直线B.C.抛物线D.椭圆

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=lnx-x+1.
(1)求f(x)的单调区间和极值;
(2)设a≥1,函数g(x)=x2-3ax+2a2-5,若对于任意x0∈(0,1),总存在x1∈(0,1),使得f(x1)=g(x0)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若函数f(x)=x3-mx2+mx+3m在(0,1)内有极大值,无极小值,则(  )
A.m<0B.m<3C.0<m<3D.m>3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)=x+\frac{1}{e^x}-1$.
(Ⅰ)求函数f(x)的极小值;
(Ⅱ)过点B(0,t)能否存在曲线y=f(x)的切线,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知数列{an}满足$\frac{ln{a}_{1}}{2}$•$\frac{ln{a}_{2}}{5}$•$\frac{ln{a}_{3}}{8}$•…•$\frac{ln{a}_{n}}{3n-1}$=$\frac{3n+2}{2}$(n∈N*),则a10=(  )
A.e26B.e29C.e32D.e35

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.到点(0,-$\frac{1}{2}$)和直线y=$\frac{1}{2}$距离相等的点的轨迹方程是x2=-2y.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某医务人员说:“包括我在内,我们社区诊所医生和护士共有16名.无论是否把我算在内,下面说法都是对的.在这些医务人员中:护士多于医生;女医生多于女护士;女护士多于男护士;至少有一名男医生.”请你推断说话的人的性别与职业是(  )
A.男医生B.男护士C.女医生D.女护士

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=a2-x(a>0且a≠1),当x>2时,f(x)>1,则f(x)在R上(  )
A.是增函数
B.是减函数
C.当x>2时是增函数,当x<2时是减函数
D.当x>2时是减函数,当x<2时是增函数

查看答案和解析>>

同步练习册答案