精英家教网 > 高中数学 > 题目详情
1.已知抛物线y2=8x,点Q在圆C:x2+y2+2x-8y+13=0上,记抛物线上任意一点P到直线x=-2的距离为d,则d+|PQ|的最小值等于3.

分析 圆C:x2+y2+2x-8y+13=0,以C(-1,4)为圆心,半径等于2,抛物线y2=8x的准线为l:x=-2,焦点为F(2,0),当P,Q,F三点共线时,P到点Q的距离d与点P到抛物线的焦点距离|PQ|之和最小,从而d+|PQ|的最小值为|FC|-r.

解答 解:如图所示,由题意,知抛物线y2=8x的焦点为F(2,0),连接PF,则d=|PF|.
圆C的方程配方,得(x+1)2+(y-4)2=4,圆心为C(-1,4),半径r=2.
d+|PQ|=|PF|+|PQ|,显然,|PF|+|PQ|≥|FQ|(当且仅当F,P,Q三点共线时取等号).
而|FQ|为圆C上的动点Q到定点F的距离,
显然当F,Q,C三点共线时取得最小值,
最小值为|CF|-r=$\sqrt{(-1-2)^{2}+(4-0)^{2}}$-2=5-2=3.
故答案为:3.

点评 本题考查线段和的最小值的求法,考查抛物线的定义,是中档题,正确转化是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.正方体ABCD-A1B1C1D1中,异面直线B1C与C1D所成的角的大小为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的首项${a_1}=\frac{3}{5},{a_{n+1}}=\frac{{3{a_n}}}{{2{a_n}+1}}(n∈{N^*})$,{an}的前n项和为Sn
(1)求证:数列$\left\{{\frac{1}{a_n}-1}\right\}$是等比数列,并求数列{an}的通项公式;
(2)证明:对任意的$x>0,{a_n}≥\frac{1}{1+x}-\frac{1}{{{{(1+x)}^2}}}(\frac{2}{3^n}-x),n∈{N^*}$.
(3)证明:${S_n}>\frac{n^2}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.随机变量X的概率分布如下,则P(X≤1)=0.4.
X0123
P0.3m0.50.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.从某学校高三年级共800名男生中随机抽取50名测量身高,据测量被测学生身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组[155,160)、第二组[160,165);…第八组[190,195],如图是按上述分组方法得到的频率分布直方图的一部分,已知第六组比第七组多1人,第一组和第八组人数相同.
(I)求第六组、第七组的频率并补充完整频率分布直方图;
(Ⅱ)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为x、y,求满足|x-y|≤5的事件概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知过点(1,1)的直线与圆x2+y2-4x-6y+4=0相交于A,B两点,则|AB|的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.△ABC中,已知AB=2,BC=5,S△ABC=4,∠ABC=θ,则cosθ=$±\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设m,n是两条不同的直线,α,β是两个不同的平面(  )
A.若m⊥n,n∥α,则m⊥αB.若m∥β,β⊥α则m⊥α
C.若m∥n,n⊥α则m⊥αD.若m⊥n,n⊥β,β⊥α,则m⊥α

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.观察如图数表:

根据数表中所反映的规律,第n行与第n-1列的交叉点上的数应该是(  )
A.2n-1B.2n+1C.n2-1D.2n-2

查看答案和解析>>

同步练习册答案