精英家教网 > 高中数学 > 题目详情
13.方程9x+log2x-2=0的解为x=$\frac{1}{2}$.

分析 利用特殊值判断法,求出方程的解即可.

解答 解:方程9x+log2x-2=0,可知x=$\frac{1}{2}$时,${9}^{\frac{1}{2}}$=3,log2$\frac{1}{2}$-2=-3,
方程的解为x=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查函数的零点与方程根的方法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知函数y=f(x)的反函数f-1(x)=log${\;}_{\frac{1}{2}}$x,则方程 f(x)=1的解集是(  )
A.{1}B.{2}C.{3}D.{0}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设定义在(-1,1)上奇函数f(x)是增函数,且f(a)+f(2a-1)<0,则实数a的取值范围是(0,$\frac{1}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x2-5x-6,其中x∈[0,3].
(1)求f(x)的最大值和最小值;
(2)若g(x)=f(x)-mx在[-2,2]上为单调函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知|$\overrightarrow{a}$|=1,$\overrightarrow{b}$=(1,3),向量$\overrightarrow{a}\\;\\;与\overrightarrow{b}$与$\overrightarrow{b}$的夹角为120°.
(1)求|$\overrightarrow{a}$+$\overrightarrow{b}$|的值;
(2)求向量$\overrightarrow{a}$$+\overrightarrow{b}$与向量-$\overrightarrow{a}$$+\frac{1}{2}$$\overrightarrow{b}$的夹角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设变量x、y满足约束条件$\left\{\begin{array}{l}{2x-y-2≤0}\\{x-2y+2≥0}\\{x+y-1≥0}\end{array}\right.$,则s=$\frac{y-x}{x+1}$的取值范围是[$-\frac{1}{2},\frac{3}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.三个数a=($\frac{2}{3}$)${\;}^{\frac{3}{4}}$,b=($\frac{2}{3}$)${\;}^{\frac{2}{3}}$,c=($\frac{1}{3}$)${\;}^{\frac{3}{4}}$的大小关系是(  )
A.b<c<aB.c<b<aC.a<c<bD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆C:与x轴相切,半径为2圆心在y=x(x>0)上.
(1)求圆C的方程;
(2)若过(4,4)的直线与圆相交,弦长为2$\sqrt{3}$,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=$\frac{1}{3}{x^3}-\frac{a}{2}{x^2}$+bx+c,其中a>0,曲线y=f(x)在点(0,f(0))处的切线方程为y=1.
(1)确定b,c的值.
(2)若过点(0,2)能且只能作曲线y=f(x)的一条切线,求a的取值范围.

查看答案和解析>>

同步练习册答案