精英家教网 > 高中数学 > 题目详情
8.已知|$\overrightarrow{a}$|=1,$\overrightarrow{b}$=(1,3),向量$\overrightarrow{a}\\;\\;与\overrightarrow{b}$与$\overrightarrow{b}$的夹角为120°.
(1)求|$\overrightarrow{a}$+$\overrightarrow{b}$|的值;
(2)求向量$\overrightarrow{a}$$+\overrightarrow{b}$与向量-$\overrightarrow{a}$$+\frac{1}{2}$$\overrightarrow{b}$的夹角的大小.

分析 (1)由条件利用两个向量的数量积的定义,求得$\overrightarrow{a}$•$\overrightarrow{b}$的值,可得|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{{(\overrightarrow{a}+\overrightarrow{b})}^{2}}$=$\sqrt{{\overrightarrow{a}}^{2}-2\overrightarrow{a}•\overrightarrow{b}{+\overrightarrow{b}}^{2}}$ 的值.
(2)向量$\overrightarrow{a}$$+\overrightarrow{b}$与向量-$\overrightarrow{a}$$+\frac{1}{2}$$\overrightarrow{b}$的夹角为θ,则由cosθ=$\frac{(\overrightarrow{a}+\overrightarrow{b})•(-\overrightarrow{a}+\frac{1}{2}\overrightarrow{b})}{|\overrightarrow{a}+\overrightarrow{b}|•|-\overrightarrow{a}+\frac{1}{2}\overrightarrow{b}|}$,求得cosθ的值,可得θ的值.

解答 解:(1)∵|$\overrightarrow{a}$|=1,$\overrightarrow{b}$=(1,3),向量$\overrightarrow{a}\\;\\;与\overrightarrow{b}$与$\overrightarrow{b}$的夹角为120°,∴|$\overrightarrow{b}$|=2,
∴$\overrightarrow{a}•\overrightarrow{b}$=1×2×cos120°=-1,
故|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{{(\overrightarrow{a}+\overrightarrow{b})}^{2}}$=$\sqrt{{\overrightarrow{a}}^{2}-2\overrightarrow{a}•\overrightarrow{b}{+\overrightarrow{b}}^{2}}$=$\sqrt{1+2+10}$=$\sqrt{13}$.
(2)设向量$\overrightarrow{a}$$+\overrightarrow{b}$与向量-$\overrightarrow{a}$$+\frac{1}{2}$$\overrightarrow{b}$的夹角为θ,则由cosθ=$\frac{(\overrightarrow{a}+\overrightarrow{b})•(-\overrightarrow{a}+\frac{1}{2}\overrightarrow{b})}{|\overrightarrow{a}+\overrightarrow{b}|•|-\overrightarrow{a}+\frac{1}{2}\overrightarrow{b}|}$=$\frac{{-\overrightarrow{a}}^{2}-\frac{1}{2}\overrightarrow{a}•\overrightarrow{b}+{\frac{1}{2}\overrightarrow{b}}^{2}}{\sqrt{{\overrightarrow{a}}^{2}{+\overrightarrow{b}}^{2}+2\overrightarrow{a}•\overrightarrow{b}}•\sqrt{\frac{{\overrightarrow{b}}^{2}}{4}{+\overrightarrow{a}}^{2}-\overrightarrow{a}•\overrightarrow{b}}}$=$\frac{1}{2}$,
∴θ=$\frac{π}{3}$,即向量$\overrightarrow{a}$$+\overrightarrow{b}$与向量-$\overrightarrow{a}$$+\frac{1}{2}$$\overrightarrow{b}$的夹角的大小为$\frac{π}{3}$.

点评 本题主要考查用两个向量的数量积表示两个向量的夹角,两个向量的数量积的定义,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.若f(x)满足下列性质:
①定义域是R,值域为[1,+∞);
②图象关于直线x=2对称;
③对任意x1,x2∈(-∞,0),当x1<x2时,都有f(x1)>f(x2).
试写出满足上述条件的函数f(x)解析式f(x)=x2-4x+5(只要写出一个即可)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知集合{x,x+y}={11,4},x∈Z,y∈N+,则10${\;}^{lg\frac{1}{y-x}}$-($\frac{1}{27}$)${\;}^{\frac{1}{3}}$-(-2)0=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.利用计算器,通过列表描点的方法在同一坐标系中作出幂函数y=x,y=x2,y=x3,y=x${\;}^{\frac{1}{2}}$,y=x${\;}^{\frac{1}{3}}$的图象,并探索幂函数y=xa(a为正有理数)图象的规律.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.正项等比数列{an},其中a2a5=100,则1ga3+1ga4=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.方程9x+log2x-2=0的解为x=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如果实数x.y满足等式(x一1)2+y2=$\frac{3}{4}$,那么,$\frac{y}{x}$的最大值是(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.若函数f(x)的定义域为A,区间D⊆A,如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界,已知函数f(x)=4x-a•2x-3.
(1)当a=-2时,求函数f(x)的零点;
(2)当a=-4时,求函数f(x)在[0,2]上的值域,并判断函数f(x)在[0,2]上是否为有界函数;
(3)若函数f(x)在(-∞,0]上是以4为上界的有界函敦,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.若不等式ax2+bx-1>0的解集是{x|1<x<2}.
(1)试求a,b的值;
(2)求不等式$\frac{ax+1}{bx-1}$>0的解集.

查看答案和解析>>

同步练习册答案