【题目】如图,在矩形ABCD中,AB=1,AD= ,P矩形内的一点,且AP= ,若 ,(λ,μ∈R),則λ+ μ的最大值为 .
科目:高中数学 来源: 题型:
【题目】数列{an}与{bn}满足:①a1=a<0,b1=b>0,②当k≥2时,若ak﹣1+bk﹣1≥0,则ak=ak﹣1 , bk= ;若ak﹣1+bk﹣1<0,则ak= ,bk=bk﹣1 .
(Ⅰ)若a=﹣1,b=1,求a2 , b2 , a3 , b3的值;
(Ⅱ)设Sn=(b1﹣a1)+(b2﹣a2)+…+(bn﹣an),求Sn(用a,b表示);
(Ⅲ)若存在n∈N* , 对任意正整数k,当2≤k≤n时,恒有bk﹣1>bk , 求n的最大值(用a,b表示).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(x-a)(x-b)(其中a>b),若f(x)的图象如图所示,则函数g(x)=ax+b的图象大致为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.
(Ⅰ)求这4个人中恰有2人去参加甲游戏的概率;
(Ⅱ)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X﹣Y|,求随机变量ξ的分布列与数学期望Eξ.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是一块地皮,其中, 是直线段,曲线段是抛物线的一部分,且点是该抛物线的顶点, 所在的直线是该抛物线的对称轴.经测量, km, km, .现要从这块地皮中划一个矩形来建造草坪,其中点在曲线段上,点, 在直线段上,点在直线段上,设km,矩形草坪的面积为km2.
(1)求,并写出定义域;
(2)当为多少时,矩形草坪的面积最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB= ,AF=1,M是线段EF的中点.
(1)求证AM∥平面BDE;
(2)求二面角A﹣DF﹣B的大小;
(3)试在线段AC上一点P,使得PF与CD所成的角是60°.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若定义在上的函数满足:对任意的,当时,都有,则称是“非減函数”.
(1)若是“非減函数”,求的取值范围;
(2)若为周期函数,且为“非减函数”,证明是常值函数;
(3)设恒大于零,是定义在R上、恒大于零的周期函数,是的最大值。函数。证明:“是周期函数”的充要条件“是常值函数”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和Sn=k3n﹣m,且a1=3,a3=27.
(I)求证:数列{an}是等比数列;
(II)若anbn=log3an+1 , 求数列{bn}的前n项和Tn .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com