分析 (1)利用倍角公式、和差公式可得:f(x)=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$.可得T=$\frac{2π}{2}$,由x∈[$\frac{π}{12}$,$\frac{2π}{3}$],可得2x∈$[\frac{π}{6},\frac{4π}{3}]$,sin2x∈[-$\frac{\sqrt{3}}{2}$,1],即可得出f(x)的值域.
(2)f(C+$\frac{π}{4}$)=$\frac{\sqrt{3}-2}{4}$,可得$\frac{\sqrt{3}}{2}$sin(2C+$\frac{π}{2}$)-$\frac{1}{2}$=$\frac{\sqrt{3}-2}{4}$.化为cos2C=$\frac{1}{2}$,解得C.又S△ABC=$\sqrt{3}$,c=2,可得$\frac{1}{2}ab$sinC=$\sqrt{3}$,4=a2+b2-2abcosC,a>b,解出即可得出.
解答 解:(1)f(x)=sin(2x+$\frac{π}{6}$)-cos2x=$\frac{\sqrt{3}}{2}sin2x+\frac{1}{2}cos2x$-$\frac{1+cos2x}{2}$=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$.
∴T=$\frac{2π}{2}$=π,
∵x∈[$\frac{π}{12}$,$\frac{2π}{3}$],2x∈$[\frac{π}{6},\frac{4π}{3}]$,sin2x∈[-$\frac{\sqrt{3}}{2}$,1],∴f(x)的值域为$[-\frac{5}{4},\frac{\sqrt{3}-1}{2}]$.
(2)f(C+$\frac{π}{4}$)=$\frac{\sqrt{3}-2}{4}$,∴$\frac{\sqrt{3}}{2}$sin(2C+$\frac{π}{2}$)-$\frac{1}{2}$=$\frac{\sqrt{3}-2}{4}$.
∴$\frac{\sqrt{3}}{2}$cos2C-$\frac{1}{2}$=$\frac{\sqrt{3}-2}{4}$,∴cos2C=$\frac{1}{2}$,
∵C∈(0,π),∴C=$\frac{π}{6}$或$\frac{5π}{6}$.
sinC=$\frac{1}{2}$.
又S△ABC=$\sqrt{3}$,c=2,
∴$\frac{1}{2}ab$sinC=$\sqrt{3}$,4=a2+b2-2abcosC,
∴ab=4$\sqrt{3}$,4=a2+b2-2ab×$(±\frac{\sqrt{3}}{2})$,又a>b,
解得a=2$\sqrt{3}$,b=2.
点评 本题考查了三角函数的图象与性质、三角形面积计算公式与余弦定理,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 1 | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-3,-1) | B. | (-1,3) | C. | (3,4) | D. | (-1,4) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 既是等差数列又是等比数列 | B. | 既不是等差数列也不是等比数列 | ||
| C. | 是等差数列但不是等比数列 | D. | 是等比数列但不是等差数列 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{4}$ | B. | $\frac{5}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{3\sqrt{2}}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com